• Title/Summary/Keyword: Biomedical technology

Search Result 2,698, Processing Time 0.037 seconds

Analysis of Research Topics and Trends on COVID-19 in Korea Using Latent Dirichlet Allocation (LDA)

  • Heo, Seong-Min;Yang, Ji-Yeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.83-91
    • /
    • 2020
  • This study aims to identify research topics and examine the trend of Covid19-related papers on DBpia. Applying latent Dirichlet allocation (LDA), we have extracted seven research topics, each of which concerns "International Dynamics", "Technology & Security", "Psychological Impact", "Biomedical-Related", "Economic Impact", "Online Education", and "Religion-Related". In addition, we used the multinomial logistic model to examine the trend of research topics. We found that the papers mainly cover topics related to "International Dynamics" and "Biomedical-Related" before June 2020, but the topics have become diverse since then. In particular, topics regarding "Economic Impact", "Online Education" and "Psychological Impact" has drawn increased attention of researchers. The findings would provide a guideline for collaboration in Covid19-related research, and could serve as a reference work for active research.

Updated Primer on Generative Artificial Intelligence and Large Language Models in Medical Imaging for Medical Professionals

  • Kiduk Kim;Kyungjin Cho;Ryoungwoo Jang;Sunggu Kyung;Soyoung Lee;Sungwon Ham;Edward Choi;Gil-Sun Hong;Namkug Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.3
    • /
    • pp.224-242
    • /
    • 2024
  • The emergence of Chat Generative Pre-trained Transformer (ChatGPT), a chatbot developed by OpenAI, has garnered interest in the application of generative artificial intelligence (AI) models in the medical field. This review summarizes different generative AI models and their potential applications in the field of medicine and explores the evolving landscape of Generative Adversarial Networks and diffusion models since the introduction of generative AI models. These models have made valuable contributions to the field of radiology. Furthermore, this review also explores the significance of synthetic data in addressing privacy concerns and augmenting data diversity and quality within the medical domain, in addition to emphasizing the role of inversion in the investigation of generative models and outlining an approach to replicate this process. We provide an overview of Large Language Models, such as GPTs and bidirectional encoder representations (BERTs), that focus on prominent representatives and discuss recent initiatives involving language-vision models in radiology, including innovative large language and vision assistant for biomedicine (LLaVa-Med), to illustrate their practical application. This comprehensive review offers insights into the wide-ranging applications of generative AI models in clinical research and emphasizes their transformative potential.

Structure of SARS-CoV-2 Spike Glycoprotein for Therapeutic and Preventive Target

  • Jaewoo Hong;Hyunjhung Jhun;Yeo-Ok Choi;Afeisha S. Taitt;Suyoung Bae;Youngmin Lee;Chang-seon Song;Su Cheong Yeom;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.8.1-8.17
    • /
    • 2021
  • The global crisis caused by the coronavirus disease 2019 (COVID-19) led to the most significant economic loss and human deaths after World War II. The pathogen causing this disease is a novel virus called the severe acute respiratory syndrome coronavirus 2 (SARSCoV-2). As of December 2020, there have been 80.2 million confirmed patients, and the mortality rate is known as 2.16% globally. A strategy to protect a host from SARS-CoV-2 is by suppressing intracellular viral replication or preventing viral entry. We focused on the spike glycoprotein that is responsible for the entry of SARS-CoV-2 into the host cell. Recently, the US Food and Drug Administration/EU Medicines Agency authorized a vaccine and antibody to treat COVID-19 patients by emergency use approval in the absence of long-term clinical trials. Both commercial and academic efforts to develop preventive and therapeutic agents continue all over the world. In this review, we present a perspective on current reports about the spike glycoprotein of SARS-CoV-2 as a therapeutic target.

Status and Prospect of 3D Bio-Printing Technology (3D 바이오 프린팅 기술 현황과 응용)

  • Kim, Sung Ho;Yeo, Ki Baek;Park, Min Kyu;Park, Joung Soon;Ki, Mi Ran;Pack, Seung Pil
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.268-274
    • /
    • 2015
  • 3D printing technology has been used in various fields such as materials science, manufacturing, education, and medical field. A number of research are underway to improve the 3D printing technology. Recently, the use of 3D printing technology for fabricating an artificial tissue, organ and bone through the laminating of cell and biocompatible material has been introduced and this could make the conformity with the desired shape or pattern for producing human entire organs for transplantation. This special printing technique is known as "3D Bio-Printing", which has potential in biomedical application including patient-customized organ out-put. In this paper, we describe the current 3D bio-printing technology, and bio-materials used in it and present it's practical applications.

Protein Ontology: Semantic Data Integration in Proteomics

  • Sidhu, Amandeep S.;Dillon, Tharam S.;Chang, Elizabeth;Sidhu, Baldev S.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.388-391
    • /
    • 2005
  • The Protein Structural and Functional Conservation need a common language for data definition. With the help of common language provided by Protein Ontology the high level of sequence and functional conservation can be extended to all organisms with the likelihood that proteins that carry out core biological processes will again be probable orthologues. The structural and functional conservation in these proteins presents both opportunities and challenges. The main opportunity lies in the possibility of automated transfer of protein data annotations from experimentally traceable model organisms to a less traceable organism based on protein sequence similarity. Such information can be used to improve human health or agriculture. The challenge lies in using a common language to transfer protein data annotations among different species of organisms. First step in achieving this huge challenge is producing a structured, precisely defined common vocabulary using Protein Ontology. The Protein Ontology described in this paper covers the sequence, structure and biological roles of Protein Complexes in any organism.

  • PDF

Accuracy improvement in the interstitial glucose measurement based on infrared spectroscopy (적외선 분광학에 의한 간질액 글루코즈 농도 측정의 정확도 향상)

  • Jeong, Hey-Jin;Kim, Mi-Sook;Noh, In-Sup;Yoon, Gil-Won
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.120-126
    • /
    • 2008
  • Glucose concentrations in the interstitial fluid were measured based on optical spectroscopy. Prediction of glucose concentrations was made using partial least squares regression and accuracy improvement was achieved by data preprocessing as well as by selecting an optimal wavelength region. For this purpose, artificial interstitial fluid samples were prepared where their glucose levels varied between 0 and 10 g/dl. Infrared spectral regions where glucose absorption lies were investigated. A region of 1000 - 1500 $cm^{-1}$ produced the best accuracy among the regions of 1000 - 1500 $cm^{-1}$, 4000 - 4545 $cm^{-1}$1 and 5500 - 6500 $cm^{-1}$. Further accuracy improvement in 1000 - 1500 $cm^{-1}$ was achieved by selecting specific wavelength bands based on a loading vector analysis method. For the samples whose glucose concentrations ranged between 0 and 0.5 g/dl, SEP= 0.0266 g/dl and R =0.9863 were achieved with 1000 - 1500 $cm^{-1}$. However, the loading vector optimized band of 1002 - 1095 $cm^{-1}$ reduced the prediction error up to 47 % (SEP =0.0125 g/dl and R=0.9970).

Development of viscosity sensor using surface acoustic wave (탄성 표면파를 이용한 점도 센서의 개발)

  • Chong, Woo-Suk;Kim, Gi-Beum;Kang, Hyung-Sub;Hong, Chul-Un
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.289-294
    • /
    • 2008
  • The purpose of this study is to materialize the viscosity sensor by using the SH-SAW sensor of which the center frequency is operated at higher than 50 MHz. In order to measure the viscosity, SAW sensor of which the center frequency is operated at 100 MHz is developed. By using the developed sensor, phase shift, delay time, insertion loss, and frequency variation are measured at different viscosity. The result shows that the phase shift difference between the viscosity variations is such that the difference between the distilled water and the 100 % glycerol solution is approximately $45^{\circ}$, the change of the insertion loss is approximately 9 dB, and the difference of frequency variation is approximately 5.9 MHz. Therefore, it is shown that viscosity of unknown solution can be measured with the surface acoustic wave sensor.

Biosurface Organic Chemistry: Interfacial Chemical Reactions for Applications to Nanobiotechnology and Biomedical Sciences

  • Chi, Young-Shik;Lee, Jung-Kyu K.;Lee, Kyung-Bok;Kim, Dong-Jin;Choi, In-Sung S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.361-370
    • /
    • 2005
  • In this review, the field of biosurface organic chemistry is defined and some examples are presented. The aim of biosurface organic chemistry, composed of surface organic chemistry, bioconjugation, and micro- and nanofabrication, is to control the interfaces between biological and non-biological systems at the molecular level. Biosurface organic chemistry has evolved into the stage, where the lateral and vertical control of chemical compositions is achievable with recent developments of nanoscience and nanotechnology. Some new findings in the field are discussed in consideration of their applicability to nanobiotechnology and biomedical sciences.

Study of Efficiency Test Evaluations Method for Imaging Device Based Laser Equipment (영상장치 기반 정밀치료용 레이저 수술기의 성능 평가 방법 개발)

  • Kim, Dae Chang;Lee, Seung Bong;Jeong, Jae Hoon;Kim, Sung Min
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.230-234
    • /
    • 2019
  • Medical laser equipment using optical energy is used to surgery and treat diseases by destroying and removing tissue. Domestic laser equipment has been used steadily in the skin and cosmetics sectors and has been changed to radiate high-power energy in a wide range to shorten patient treatment time. However, side effects such as burns and damage of normal tissues occurred. To solve this problem, techniques for detecting lesions using an imaging device and selectively radiating the laser have been developed. In this study, we proposed an evaluation method to evaluate the safety and performance of target detection accuracy, laser irradiation accuracy and motion protection device technology derived from product analysis and investigation. Finally, the validity of the evaluation method was evaluated by evaluating the imaging device based laser equipment as the proposed evaluation method.

Immunomodulating Activity of Laminaria japonica Polysaccharides (참다시마 다당체의 면역 증강 활성)

  • Ryu, Deok-Seon;Oh, Seung-Min;Kim, Ki-Hoon;Kim, Soo-Hwan;Choi, Hyun-Ju;Lee, Dong-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.350-354
    • /
    • 2010
  • Laminaria japonica polysaccharides (LP) were prepared from L. japonica through hot water extraction, ultrafiltration and gel chromatography. In this study, we investigated the immunomodulating activity of LP (0.25-1 mg/mL) on the mitogen/alloantigen reactive proliferation and killing activity of the Balb/c mouse splenocytes. The LP directly induced the proliferation of splenocytes that was stimulated with mitogen or alloantigen in a dose-dependent manner. The killing activity of cytotoxic T lymphocytes (CTLs) and lymphokine activated killer cells (LAKs) were enhanced significantly in the LP treated cells. Also, the treatment of splenocytes with LP increased production of interleukin-2 (IL-2). These results suggest that polysaccharides from L. japonica show a substantial immunomodulating activity in mouse immune cells.