• 제목/요약/키워드: Biomedical polymer

검색결과 318건 처리시간 0.024초

A Probing of Inhibition Effect on Specific Interaction Between Glucose Ligand Carrying Polymer and HepG2 Cells

  • Park, Keun-Hong;Park, Sang-Hyug;Lee, Hyun-Jung;Min, Byoung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.450-455
    • /
    • 2004
  • A reducing glucose-carrying polymer, called poly [3-O-(4'-vinylbenzyl)-D-glucose](PVG), was interacted with HepG2 cells including a type-l glucose transporter (GLUT-1) on the cell membrane. The cooperative interaction between a number of GLUT-1s and a number of reducing 3-O-methyl-D-glucose moieties on the PVG polymer chain was found to be responsible for the increase in the interaction with HepG2 cells. The affinity between the cells and the PVG was studied using RITC-labeled glycopolymers. The specific interaction between the GLUT-1 on HepG2 cells and the PVG polymer carrying reducing glucose moieties was suppressed by the inhibitors, phloretin, phloridzin, and cytochalasin B. Direct observation by confocal laser microscopy with the use of RITC-labeled PVG and pretreatment of HepG2 cells with the inhibitors demonstrated that the cells interacted with the soluble form of the PVG polymer via GLUT-1, while fluorescence labeling of the cell surface was prevented after pretreatment with the inhibitors of GLUT-1.

온도응답성 고분자의 패턴상 그래프트를 이용한 공배양법 (Cell Co-culture Method by Patterned Gratt of Thermo-Responsive Polymer)

  • 배진숙;안창현;윤관한;권오형;강인규
    • 폴리머
    • /
    • 제29권3호
    • /
    • pp.294-299
    • /
    • 2005
  • 온도응답성 고분자인 PIPAAm을 포토마스크를 사용하여 전자빔조사에 의해 패턴상으로 세포배양용 폴리스티렌 접시표면에 그래프트하였다. 폴리스티렌 표면에의 PIPAAm의 그래프트는 AIR-FTIR과 ESCA에 의한 표면분석을 통해 확인하였다. 이러한 표면에 간실질세포를 $37^{circ}C$에서 배양하였고, 균일하게 간세포가 배양된 배양접시를 PIPAAm의 LCST 이하인 $20^{circ}C$로 배양온도를 낮추어 PIPAAm이 그래프트된 도메인에 접착된 간실질세포를 탈착시키고 배양접시를 다시 $37^{circ}C$로 올린 후 두 번째 세포인 혈관내피세포를 파종하여 PIPAAm이 그래프트된 도메인에만 선택적으로 접착시킴으로써 같은 평면상에서 간실질세포와 혈관내피세포를 공배양할 수 있게 되었다. 이러한 방법으로 생체외에서 간실질세포와 혈관내피세포를 장기간에 걸쳐 공배양할 수 있었다.

폴리아닐린/탄소나노튜브 폴리머 액츄에이터의 모델링, 시뮬레이션 및 제어 (Modeling, Simulation, and Control of a Polyaniline/Carbon-Nanotube Polymer Actuator)

  • 손기원;이병주;김선정;김인영;김선일
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권3호
    • /
    • pp.348-354
    • /
    • 2007
  • Polymer actuators, which are also called as smart materials, change their shapes when electrical, chemical, thermal, or magnetic energy is applied to them and are useful in wide variety of applications such as microelectromechanical systems (MEMS), machine components, and artificial muscles. For this study, Polyaniline/carbon-nanotube polymer actuator that is one of electroactive polymer actuators was prepared. Since the nonlinear phenomena of hysteresis and a step response are essential considerations for practical use of polymer actuators, we have investigated the movement of the Polyaniline/carbon-nanotube polymer actuator and have developed an integrated model that can be used for simulating and predicting the hysteresis and a step response during actuation. The Preisach hysteresis model, one of the most popular phenomenological models of hysteresis, were used for describing the hysteretic behavior of Polyaniline/carbon-nanotube polymer actuator while the ARX method, one of system identification techniques, were used for modeling a step response. In this paper, we first expain details in preparation of the Polyaniline/carbon-nanotube polymer then present the mathematical description of our model, the extraction of the parameters, simulation results from the model, and finally a comparison with measured data.

Silk Protein as a Fascinating Biomedical Polymer: Structural Fundamentals and Applications

  • Ki, Chang-Seok;Park, Young-Hwan;Jin, Hyoung-Joon
    • Macromolecular Research
    • /
    • 제17권12호
    • /
    • pp.935-942
    • /
    • 2009
  • Silk is a textile material, as well as one of the oldest biomaterials. However, the recent progress of biomedical science and technology has led to the replacement of silk by various biomaterials based on synthetic polymers. Despite the wide variety of biomaterials available, these materials suffer certain limitations that prevent them from meeting the various demands of the medical field. Therefore, silk continues to attract considerable interest as a promising biomaterial. This paper explains the fundamentals of silk protein, and reviews the many applications of silk biomedical polymers.

Precise ultrasonic coating and controlled release of sirolimus with biodegradable polymers for drug-eluting stent

  • Joung, Yoon Ki;Jang, Bu Nam;Kang, Jong Hee;Han, Dong Keun
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제1권1호
    • /
    • pp.13-25
    • /
    • 2014
  • In the current study, a drug-eluting stent coated with biodegradable polymers and sirolimus was developed by using an ultrasonic nanocoater and characterized in aspects of surface smoothness and coating thickness. In addition, in vitro release profiles of sirolimus by changing top coating layer with different biodegradable polymers were investigated. Smooth surfaces with variable thickness could be fabricated by optimizing polymer concentration, flow rate, nozzle-tip distance, gas pressure, various solvents and ultrasonic power. Smooth surface could be generated by using volatile solvents (acetone, chloroform, and methylene chloride) or post-treating with solvent vapor. Coating thickness could be controlled by varying injection volume or polymer concentration, and higher concentration could reduce the coating time while obtaining the same thickness. The thickness measurement was the most effectively performed by a conventional cutting method among three different methods that were investigated in this study. Release profiles of sirolimus were effectively controlled by changing polymers for top layer. PLGA made the release rate 3 times faster than PDLLA and PLLA and all top layers prevented burst release at the initial phase of profiles. Our results will provide useful and informative knowledge for developing drug-eluting stents, especially coated with biodegradable polymers.