• Title/Summary/Keyword: Biomedical machine learning

Search Result 86, Processing Time 0.024 seconds

Machine Learning-based Prediction of Relative Regional Air Volume Change from Healthy Human Lung CTs

  • Eunchan Kim;YongHyun Lee;Jiwoong Choi;Byungjoon Yoo;Kum Ju Chae;Chang Hyun Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.576-590
    • /
    • 2023
  • Machine learning is widely used in various academic fields, and recently it has been actively applied in the medical research. In the medical field, machine learning is used in a variety of ways, such as speeding up diagnosis, discovering new biomarkers, or discovering latent traits of a disease. In the respiratory field, a relative regional air volume change (RRAVC) map based on quantitative inspiratory and expiratory computed tomography (CT) imaging can be used as a useful functional imaging biomarker for characterizing regional ventilation. In this study, we seek to predict RRAVC using various regular machine learning models such as extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and multi-layer perceptron (MLP). We experimentally show that MLP performs best, followed by XGBoost. We also propose several relative coordinate systems to minimize intersubjective variability. We confirm a significant experimental performance improvement when we apply a subject's relative proportion coordinates over conventional absolute coordinates.

PubMiner: Machine Learning-based Text Mining for Biomedical Information Analysis

  • Eom, Jae-Hong;Zhang, Byoung-Tak
    • Genomics & Informatics
    • /
    • v.2 no.2
    • /
    • pp.99-106
    • /
    • 2004
  • In this paper we introduce PubMiner, an intelligent machine learning based text mining system for mining biological information from the literature. PubMiner employs natural language processing techniques and machine learning based data mining techniques for mining useful biological information such as protein­protein interaction from the massive literature. The system recognizes biological terms such as gene, protein, and enzymes and extracts their interactions described in the document through natural language processing. The extracted interactions are further analyzed with a set of features of each entity that were collected from the related public databases to infer more interactions from the original interactions. An inferred interaction from the interaction analysis and native interaction are provided to the user with the link of literature sources. The performance of entity and interaction extraction was tested with selected MEDLINE abstracts. The evaluation of inference proceeded using the protein interaction data of S. cerevisiae (bakers yeast) from MIPS and SGD.

An Experimental Study on the Relation Extraction from Biomedical Abstracts using Machine Learning (기계 학습을 이용한 바이오 분야 학술 문헌에서의 관계 추출에 대한 실험적 연구)

  • Choi, Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.50 no.2
    • /
    • pp.309-336
    • /
    • 2016
  • This paper introduces a relation extraction system that can be used in identifying and classifying semantic relations between biomedical entities in scientific texts using machine learning methods such as Support Vector Machines (SVM). The suggested system includes many useful functions capable of extracting various linguistic features from sentences having a pair of biomedical entities and applying them into training relation extraction models for maximizing their performance. Three globally representative collections in biomedical domains were used in the experiments which demonstrate its superiority in various biomedical domains. As a result, it is most likely that the intensive experimental study conducted in this paper will provide meaningful foundations for research on bio-text analysis based on machine learning.

Evaluation of the Effect of using Fractal Feature on Machine learning based Pancreatic Tumor Classification (기계학습 기반 췌장 종양 분류에서 프랙탈 특징의 유효성 평가)

  • Oh, Seok;Kim, Young Jae;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1614-1623
    • /
    • 2021
  • In this paper, the purpose is evaluation of the effect of using fractal feature in machine learning based pancreatic tumor classification. We used the data that Pancreas CT series 469 case including 1995 slice of benign and 1772 slice of malignant. Feature selection is implemented from 109 feature to 7 feature by Lasso regularization. In Fractal feature, fractal dimension is obtained by box-counting method, and hurst coefficient is calculated range data of pixel value in ROI. As a result, there were significant differences in both benign and malignancies tumor. Additionally, we compared the classification performance between model without fractal feature and model with fractal feature by using support vector machine. The train model with fractal feature showed statistically significant performance in comparison with train model without fractal feature.

Selecting Machine Learning Model Based on Natural Language Processing for Shanghanlun Diagnostic System Classification (자연어 처리 기반 『상한론(傷寒論)』 변병진단체계(辨病診斷體系) 분류를 위한 기계학습 모델 선정)

  • Young-Nam Kim
    • 대한상한금궤의학회지
    • /
    • v.14 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • Objective : The purpose of this study is to explore the most suitable machine learning model algorithm for Shanghanlun diagnostic system classification using natural language processing (NLP). Methods : A total of 201 data items were collected from 『Shanghanlun』 and 『Clinical Shanghanlun』, 'Taeyangbyeong-gyeolhyung' and 'Eumyangyeokchahunobokbyeong' were excluded to prevent oversampling or undersampling. Data were pretreated using a twitter Korean tokenizer and trained by logistic regression, ridge regression, lasso regression, naive bayes classifier, decision tree, and random forest algorithms. The accuracy of the models were compared. Results : As a result of machine learning, ridge regression and naive Bayes classifier showed an accuracy of 0.843, logistic regression and random forest showed an accuracy of 0.804, and decision tree showed an accuracy of 0.745, while lasso regression showed an accuracy of 0.608. Conclusions : Ridge regression and naive Bayes classifier are suitable NLP machine learning models for the Shanghanlun diagnostic system classification.

  • PDF

Prediction of Diabetic Nephropathy from Diabetes Dataset Using Feature Selection Methods and SVM Learning (특징점 선택방법과 SVM 학습법을 이용한 당뇨병 데이터에서의 당뇨병성 신장합병증의 예측)

  • Cho, Baek-Hwan;Lee, Jong-Shill;Chee, Young-Joan;Kim, Kwang-Won;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.355-362
    • /
    • 2007
  • Diabetes mellitus can cause devastating complications, which often result in disability and death, and diabetic nephropathy is a leading cause of death in people with diabetes. In this study, we tried to predict the onset of diabetic nephropathy from an irregular and unbalanced diabetic dataset. We collected clinical data from 292 patients with type 2 diabetes and performed preprocessing to extract 184 features to resolve the irregularity of the dataset. We compared several feature selection methods, such as ReliefF and sensitivity analysis, to remove redundant features and improve the classification performance. We also compared learning methods with support vector machine, such as equal cost learning and cost-sensitive learning to tackle the unbalanced problem in the dataset. The best classifier with the 39 selected features gave 0.969 of the area under the curve by receiver operation characteristics analysis, which represents that our method can predict diabetic nephropathy with high generalization performance from an irregular and unbalanced dataset, and physicians can benefit from it for predicting diabetic nephropathy.

Current Status of Automatic Fish Measurement (어류의 외부형질 측정 자동화 개발 현황)

  • Yi, Myunggi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.638-644
    • /
    • 2022
  • The measurement of morphological features is essential in aquaculture, fish industry and the management of fishery resources. The measurement of fish requires a large investment of manpower and time. To save time and labor for fish measurement, automated and reliable measurement methods have been developed. Automation was achieved by applying computer vision and machine learning techniques. Recently, machine learning methods based on deep learning have been used for most automatic fish measurement studies. Here, we review the current status of automatic fish measurement with traditional computer vision methods and deep learning-based methods.

A Study on Jaundice Computer-aided Diagnosis Algorithm using Scleral Color based Machine Learning

  • Jeong, Jin-Gyo;Lee, Myung-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.131-136
    • /
    • 2018
  • This paper proposes a computer-aided diagnostic algorithm in a non-invasive way. Currently, clinical diagnosis of jaundice is performed through blood sampling. Unlike the old methods, the non-invasive method will enable parents to measure newborns' jaundice by only using their mobile phones. The proposed algorithm enables high accuracy and quick diagnosis through machine learning. In here, we used the SVM model of machine learning that learned the feature extracted through image preprocessing and we used the international jaundice research data as the test data set. As a result of applying our developed algorithm, it took about 5 seconds to diagnose jaundice and it showed a 93.4% prediction accuracy. The software is real-time diagnosed and it minimizes the infant's pain by non-invasive method and parents can easily and temporarily diagnose newborns' jaundice. In the future, we aim to use the jaundice photograph of the newborn babies' data as our test data set for more accurate results.

Prediction of watermelon sweetness using a reflected sound (반향 소리를 이용한 기계 학습 기반 수박의 당도 예측)

  • Kim, Ki-Hoon;Woo, Ji-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.1-6
    • /
    • 2020
  • There are various approaches to evaluate a watermelon sweetness. However, there are some limitations to evaluating cost, watermelon damage, and subjective issue. In this study, we developed a novel approach to predict a watermelon sweetness using reflected sound and the machine learning algorithm. It was observed that higher brix watermelon produced higher spectral power is reflected sound. Based on the spectral-temporal features of reflected sound, the machine learning algorithms could accurately predict the sweetness group at a rate of 83.2 and 59.6 % in 2-groups and 3-groups classification, respectively.

Unsupervised Machine Learning based on Neighborhood Interaction Function for BCI(Brain-Computer Interface) (BCI(Brain-Computer Interface)에 적용 가능한 상호작용함수 기반 자율적 기계학습)

  • Kim, Gui-Jung;Han, Jung-Soo
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.289-294
    • /
    • 2015
  • This paper proposes an autonomous machine learning method applicable to the BCI(Brain-Computer Interface) is based on the self-organizing Kohonen method, one of the exemplary method of unsupervised learning. In addition we propose control method of learning region and self machine learning rule using an interactive function. The learning region control and machine learning was used to control the side effects caused by interaction function that is based on the self-organizing Kohonen method. After determining the winner neuron, we decided to adjust the connection weights based on the learning rules, and learning region is gradually decreased as the number of learning is increased by the learning. So we proposed the autonomous machine learning to reach to the network equilibrium state by reducing the flow toward the input to weights of output layer neurons.