• Title/Summary/Keyword: Biomedical application

Search Result 870, Processing Time 0.034 seconds

Cosmetic Application Using Skin Whitening and Anti-microbial effects of Ethyl Acetate and n-Butanol Fractions from Eruca sativa (Eruca sativa 에칠아세테이트와 부탄올 분획물의 미백 및 항균효과를 이용한 화장품 응용연구)

  • Park, Jihye;Lee, Kwang-ho;Kim, Bora
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.651-661
    • /
    • 2021
  • Eruca sativa, called arugula, is a perennial plant in the Brassicaceae family, an edible plant commonly used in Italian cuisine. To study as a cosmetic material application E. sativa was extracted with 70% ethanol (ES). Then ES was fractionated using n-hexane, chloroform, ethyl acetate, n-butyl alcohol and water (EHex, EEA, ECHCl3, EBuOH and EDW). EEA showed mushroom tyrosinase inhibitory activity. ES, EEA and EBuOH showed inhibition of tyrosinase activity. As a result, ES is expected to have skin whitening efficacy. ES was applied to 0.05, 0.1% the toner and emulsion formulation to test the stability. The anti-microbial activity of eight bacteria and fungi including Staphylococcus aureus and Propionibacterium acnes which cause dermatitis and acne was evaluated. EEA showed effects in all of microorganisms. The toner and emulsion containing ES with 0.05, 0.1% were passed in the challenge test. At -20, 4, 25, 55 ℃ and daylight, there was no significant change on pH, viscosity for 4 months. However, emulsions had phase separation phenomenon at 55 ℃, so the base formulation needs improvement. In addition, through the skin penetration test, EEA penetrated 0.058% in 6 hr, predicting the clinical efficacy. This means that E. sativa can contribute whitening agent and the synergistic effect of preservatives.

Domestic Occupational Therapist Awareness Survey for the Need to Apply Artificial Intelligence Measurement Technology for Clinical Observation Evaluation Based on Sensory Integration (감각통합에 기초한 임상 관찰 평가의 AI 측정 기술 적용 필요성을 위한 국내 작업치료사 인식 조사)

  • Cho, Sun-Young;Jung, Young-Jin;Kim, Jung-Ran
    • Therapeutic Science for Rehabilitation
    • /
    • v.12 no.1
    • /
    • pp.23-35
    • /
    • 2023
  • Objective : This study is to examine the practical use of clinical observational evaluation of sensory integration therapy and the difficulty and importance of measuring results for each sub-item, and through this, to confirm the usefulness of the application of Artificial Intelligence measurement technology in clinical observational measurement and the need for application. Methods : The questionnaire consisted of the actual use of the sensory integration evaluation tool, the difficulty of measurement for each detailed item of clinical observation, the usefulness of AI measurement technology, the importance of evaluation for each detailed item, and the need for developing AI measurement technology. Results : The detailed items that were difficult to measure during clinical observation were the Finger-to-Nose Test and Postural control (71.0%), followed by Eye movement and Protective Extension Test (67.7%). 83.9% of the study subjects answered that it would be useful to apply AI measurement technology when observing images. Postural control (on the ball) (90.3%) was the highest item that answered that AI measurement technology was needed, followed by Eye movement (83.9%), and Prone Extension and Protective Extension Test (77.4%). Conclusion : The results confirmed the desire of therapists that clinical observation is an important evaluation tool in the field of child occupational therapy in Korea.

The Usability Evaluation of the Usefulness of Bismuth Shields in PET/CT Examination (PET/CT 검사에서 비스무스(bismuth) 차폐체의 적용에 따른 유용성 평가)

  • Park, Hoon-Hee;Lee, Juyoung;Kim, Ji-Hyeon;Nam, Kun-Sik;Lyu, Kwang-Yeul;Lee, Tae Soo
    • Journal of radiological science and technology
    • /
    • v.37 no.1
    • /
    • pp.49-56
    • /
    • 2014
  • Recently with CT developed, various studies for reduction of exposure dose is underway. Study of bismuth shields in these studies is actively underway, and has already been applied in the clinical. However, the application of the PET/CT examination was not activated. Therefore, through this study, depending on the application of bismuth shields in the PET/CT examination, we identify the quality of the image and the impact on the Standard Uptake Value (SUV). In this study, to apply to the shielding of the breast, by using the bismuth shields that contains 0.06 mm Pb ingredients, was applied to the PET/CT GEMINI TF 64 (Philips Healthcare, Cleveland, USA). Phantom experiments using the NEMA IEC Body Phantom, images were acquired according to the presence or absence of bismuth shields apply. Also, When applying, images were obtained by varying the spacing 0, 1, 2 cm each image set to the interest range in the depth of the phantom by using EBW-NM ver.1.0. When image of the PET Emission acquires, the SUV was in increased depending on the use of bismuth shields, difference in the depth to the surface from deep in the phantom increasingly SUV increased (P<0.005). Also, when using shields, as the more gab decreased, SUV is more increased (P<0.005). Through this study, PET/CT examination by using of bismuth shields which is used as purpose of reduction dose. When using shields, the difference of SUV resulting from the application of bismuth shields exist and that difference when gab is decrease and surface is wider. Therefore, setting spacing of shield should be considered, if considering the reduction of the variation of SUV and image quality, disease of deep organs should be a priority rather than superficial organ disease. Use of bismuth shielding factor considering the standard clinical examination, decrease unnecessary exposure can be expected to be considered.

The Development of a Cryotherapy System (한냉물리치료기의 개발)

  • Kim, Yeong-Ho;Yang, Gil-Tae;Jang, Yun-Hui;Park, Si-Bok;Ryu, Jin-Sang
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.617-622
    • /
    • 1998
  • A cryotherapy system using cold air was developed. The developed system had superior low-temperature characteristics with various flow rates and nozzle sizes, and used R-404A, as a coolant, which has no destructive effects of Ozone layers. Flow rates and the treatment time can be easily altered during the operation. In addition, and alarm system was designed for the overload, overheat, and over-charge of the machine. For clinical applications, skin temperatures, intra-articular temperatures of the knee joint and intra-muscluar temperatures of the gluteal muscles were measured during and after the cryotherapy. After a 5-minute therapy, skin and intra-articular temperatures decreased by $23.3{\pm}4.7 and 4.1 {\pm}1.0^{circ}C$, respectively. A 5-minute cryotherapy was good enough to maintain low intra-articular temperatures for 2-3 hours. Resting intra-muscular temperatures in 2, 4, and 6cm deep in the gluteal muscle were $36.5{\pm}1.2, 36.9{\pm}0.2, 37.1{\pm}0.2^{circ}C$, respectively (p<0.05). Lowest temperatures in 2, 4, and 6cm depth were $35.1{\pm}0.7, 36.2{\pm}0.4, 36.9{\pm}0.3^{circ}C$, respectively (p<0.05). Temperatures after a 2-hour cold air application on the skin and in the muscle in dept도 of 2, 4, and 6cm were $32.2{\pm}1.1, 36.2{\pm}0.5, 36.6{\pm}0.3, 36.9{\pm}0.3^{circ}C$respectively (p<0.05). Temperatures on the skin and in the muscle significantly decreased after 2 hours, compared with before cold air application (p<0.05). The intra-muscular temperature was changed more slowly than the skin temperature, and the deeper the muscle, the lesser temperature changes. The effect of a 5-minute cold air application lasts up to 2 hours, and it seems that the rebound-rise of the temperature dut to the reactive vasodilatation does not occur in the gluteal muscle.

  • PDF

Satisfaction Evaluation of Diabetic Foot Disease Measurement using AI-based Application (AI기반 에플리케이션을 활용한 당뇨병성 족부질환 측정의 만족도 평가)

  • Hyeun-Woo Choi;Hyo-jin Lee;Min-jeong Kim;Jong-Min Lee;Dong-hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.4
    • /
    • pp.327-334
    • /
    • 2024
  • The purpose of this study is to develop a customized foot disease analysis and management system for diabetic patients to prevent foot ulcers in diabetic foot disease patients. This system utilizes image analysis technology to measure not only foot pressure, but also ankle deformation, body balance, and foot wounds. Through various data, it is possible to accurately analyze the state of foot deformation, and based on this, the exact state of deformation of the foot of a patient with diabetic foot disease was identified and a customized insole was produced. This study was conducted to examine the satisfaction level of using an application that checks the status of diabetic foot disease wounds and to identify the degenerative status of diabetic foot disease patients and foot disease patients by wearing customized insoles and to survey the satisfaction of wearing insoles. As a result of the study, the knee angle measured for plantar pressure was -0.8 ± 1.3 degrees and ranged from a minimum of -2.4 degrees to a maximum of 1.1 degrees, and there was no significant difference in valgus knee between both lower extremities (p = 0.534). There was a significant difference in tibial angle between both lower extremities (p < 0.001). Ankle angle on the left side was 2.6 ± 2.0 degrees, ranging from a minimum of 0 degrees to a maximum of 6.3 degrees, and on the right, it was 4.5 ± 2.1 degrees, with a distribution of minimum 1.5 degrees to a maximum of 9.1 degrees. There was a significant difference in ankle angle between both lower extremities (p = 0.011). They responded that they felt an average of 4.3 points of satisfaction with the plantar pressure measurement application. Respondents responded that they felt an average of 3.9 points of satisfaction with the use of customized insoles.

Single Cell Dissociation Methods for Flow Cytometric Cell Death Analysis of Hypoxia-Ischemia Injured Newborn Rat Pup Brain (저산소성 허혈성 뇌손상이 유발된 신생백서에서 단일세포의 분리)

  • Hwang, Jong Hee;Sung, Dong Kyung;Choi, Chang Won;Kang, Saem;Chang, Yun Sil;Park, Won Soon;Lee, Munhyang
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.5
    • /
    • pp.545-550
    • /
    • 2005
  • Purpose : Newborn brain tissue has to be dissociated into a single cell suspension for flow cytometric analysis of cell death during hypoxia-ischemia. Thus the development of a method to dissociate cells from the brain tissue with least damage and maintenance of membrane and antigen integrity remains the challenge for the in vivo application of this technique. We evaluated the efficacy of mechanical or enzymatic (collagenase or tryspin) methods of brain tissue disaggregation. Methods : The extent of the damage to the plasma membrane and loss of the characteristics of the membrane induced with each dissociation method was determined by comparing the flow cytometric results labeled with both fluorescent annexin V and propidium iodide of the newborn rat pup brain tissue in the control group (n=10) and in the 48-hour after hypoxia-ischemia group (n=10). Results : In the control group, the cell percentage of damaged, apoptotic and necrotic cells of both hemispheres with the mechanical dissociation method was significantly increased compared to the trypsin or collagenase method. In the 48-hour after hypoxia-ischemia group, the cell percentage of apoptotic and necrotic cells of the right hemisphere with the collagenase method significantly increased, and live cells significantly decreased compared to the left hemisphere, control group. Although the same trend was observed, the extent of alterations made with the trypsin method was significantly less compared to the collagenase method. Conclusion : The dissociation of neonatal brain tissue for flow cytometric analysis with collagenase was most efficacious with the least cell damage and preservation of the plasma membrane characteristics.

Study of Scatter Influence of kV-Conebeam CT Based Calculation for Pelvic Radiotherapy (골반 방사선 치료에서 산란이 kV-Conebeam CT 영상 기반의 선량계산에 미치는 영향에 대한 연구)

  • Yoon, KyoungJun;Kwak, Jungwon;Cho, Byungchul;Kim, YoungSeok;Lee, SangWook;Ahn, SeungDo;Nam, SangHee
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 2014
  • The accuracy and uniformity of CT numbers are the main causes of radiation dose calculation error. Especially, for the dose calculation based on kV-Cone Beam Computed Tomography (CBCT) image, the scatter affecting the CT number is known to be quite different by the object sizes, densities, exposure conditions, and so on. In this study, the scatter impact on the CBCT based dose calculation was evaluated to provide the optimal condition minimizing the error. The CBCT images was acquired under three scatter conditions ("Under-scatter", "Over-scatter", and "Full-scatter") by adjusting amount of scatter materials around a electron density phantom (CIRS062, Tissue Simulation Technology, Norfolk, VA, USA). The CT number uniformities of CBCT images for water-equivalent materials of the phantom were assessed, and the location dependency, either "inner" or "outer" parts of the phantom, was also evaluated. The electron density correction curves were derived from CBCT images of the electron density phantom in each scatter condition. The electron density correction curves were applied to calculate the CBCT based doses, which were compared with the dose based on Fan Beam Computed Tomography (FBCT). Also, 5 prostate IMRT cases were enrolled to assess the accuracy of dose based on CBCT images using gamma index analysis and relative dose differences. As the CT number histogram of phantom CBCT images for water equivalent materials was fitted with a gaussian function, the FHWM (146 HU) for "Full-scatter" condition was the smallest among the FHWM for the three conditions (685 HU for "under scatter" and 264 HU for "over scatter"). Also, the variance of CT numbers was the smallest for the same ingredients located in the center and periphery of the phantom in the "Full-scatter" condition. The dose distributions calculated with FBCT and CBCT images compared in a gamma index evaluation of 1%/3 mm criteria and in the dose difference. With the electron density correction acquired in the same scatter condition, the CBCT based dose calculations tended to be the most accurate. In 5 prostate cases in which the mean equivalent diameter was 27.2 cm, the averaged gamma pass rate was 98% and the dose difference confirmed to be less than 2% (average 0.2%, ranged from -1.3% to 1.6%) with the electron density correction of the "Full-scatter" condition. The accuracy of CBCT based dose calculation could be confirmed that closely related to the CT number uniformity and to the similarity of the scatter conditions for the electron density correction curve and CBCT image. In pelvic cases, the most accurate dose calculation was achievable in the application of the electron density curves of the "Full-scatter" condition.

Reproducibility of Regional Pulse Wave Velocity in Healthy Subjects

  • Im Jae-Joong;Lee, Nak-Bum;Rhee Moo-Yong;Na Sang-Hun;Kim, Young-Kwon;Lee, Myoung-Mook;Cockcroft John R.
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.2
    • /
    • pp.19-24
    • /
    • 2006
  • Background: Pulse wave velocity (PWV), which is inversely related to the distensibility of an arterial wall, offers a simple and potentially useful approach for an evaluation of cardiovascular diseases. In spite of the clinical importance and widespread use of PWV, there exist no standard either for pulse sensors or for system requirements for accurate pulse wave measurement. Objective of this study was to assess the reproducibility of PWV values using a newly developed PWV measurement system in healthy subjects prior to a large-scale clinical study. Methods: System used for the study was the PP-1000 (Hanbyul Meditech Co., Korea), which provides regional PWV values based on the measurements of electrocardiography (ECG), phonocardiography (PCG), and pulse waves from four different sites of arteries (carotid, femoral, radial, and dorsalis pedis) simultaneously. Seventeen healthy male subjects with a mean age of 33 years (ranges 22 to 52 years) without any cardiovascular disease were participated for the experiment. Two observers (observer A and B) performed two consecutive measurements from the same subject in a random order. For an evaluation of system reproducibility, two analyses (within-observer and between-observer) were performed, and expressed in terms of mean difference ${\pm}2SD$, as described by Bland and Altman plots. Results: Mean and SD of PWVs for aorta, arm, and leg were $7.07{\pm}1.48m/sec,\;8.43{\pm}1.14m/sec,\;and\;8.09{\pm}0.98m/sec$ measured from observer A and $6.76{\pm}1.00m/sec,\;7.97{\pm}0.80m/sec,\;and\;\7.97{\pm}0.72m/sec$ from observer B, respectively. Between-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.14{\pm\}0.62m/sec,\;0.18{\pm\}0.84m/sec,\;and\;0.07{\pm}0.86m/sec$, and the correlation coefficients were high especially 0.93 for aortic PWV. Within-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.01{\pm}0.26m/sec,\;0.02{\pm}0.26m/sec,\;and\;0.08{\pm}0.32m/sec$ from observer A and $0.01{\pm}0.24m/sec,\;0.04{\pm}0.28m/sec,\;and\;0.01{\pm}0.20m/sec$ from observer B, respectively. All the measurements showed significantly high correlation coefficients ranges from 0.94 to 0.99. Conclusion: PWV measurement system used for the study offers comfortable and simple operation and provides accurate analysis results with high reproducibility. Since the reproducibility of the measurement is critical for the diagnosis in clinical use, it is necessary to provide an accurate algorithm for the detection of additional features such as flow wave, reflection wave, and dicrotic notch from a pulse waveform. This study will be extended for the comparison of PWV values from patients with various vascular risks for clinical application. Data acquired from the study could be used for the determination of the appropriate sample size for further studies relating various types of arteriosclerosis-related vascular disease.

  • PDF

Usefulness of Deep Learning Image Reconstruction in Pediatric Chest CT (소아 흉부 CT 검사 시 딥러닝 영상 재구성의 유용성)

  • Do-Hun Kim;Hyo-Yeong Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.297-303
    • /
    • 2023
  • Pediatric Computed Tomography (CT) examinations can often result in exam failures or the need for frequent retests due to the difficulty of cooperation from young patients. Deep Learning Image Reconstruction (DLIR) methods offer the potential to obtain diagnostically valuable images while reducing the retest rate in CT examinations of pediatric patients with high radiation sensitivity. In this study, we investigated the possibility of applying DLIR to reduce artifacts caused by respiration or motion and obtain clinically useful images in pediatric chest CT examinations. Retrospective analysis was conducted on chest CT examination data of 43 children under the age of 7 from P Hospital in Gyeongsangnam-do. The images reconstructed using Filtered Back Projection (FBP), Adaptive Statistical Iterative Reconstruction (ASIR-50), and the deep learning algorithm TrueFidelity-Middle (TF-M) were compared. Regions of interest (ROI) were drawn on the right ascending aorta (AA) and back muscle (BM) in contrast-enhanced chest images, and noise (standard deviation, SD) was measured using Hounsfield units (HU) in each image. Statistical analysis was performed using SPSS (ver. 22.0), analyzing the mean values of the three measurements with one-way analysis of variance (ANOVA). The results showed that the SD values for AA were FBP=25.65±3.75, ASIR-50=19.08±3.93, and TF-M=17.05±4.45 (F=66.72, p=0.00), while the SD values for BM were FBP=26.64±3.81, ASIR-50=19.19±3.37, and TF-M=19.87±4.25 (F=49.54, p=0.00). Post-hoc tests revealed significant differences among the three groups. DLIR using TF-M demonstrated significantly lower noise values compared to conventional reconstruction methods. Therefore, the application of the deep learning algorithm TrueFidelity-Middle (TF-M) is expected to be clinically valuable in pediatric chest CT examinations by reducing the degradation of image quality caused by respiration or motion.

Application of a Single-pulsatile Extracorporeal Life Support System for Extracorporeal Membrane Oxygenation -An experimental study - (단일 박동형 생명구조장치의 인공폐 적용 -실험연구-)

  • Kim, Tae-Sik;Sun, Kyung;Lee, Kyu-Baek;Park, Sung-Young;Hwang, Jae-Joon;Son, Ho-Sung;Kim, Kwang-Taik;Kim. Hyoung-Mook
    • Journal of Chest Surgery
    • /
    • v.37 no.3
    • /
    • pp.201-209
    • /
    • 2004
  • Extracorporeal life support (ECLS) system is a device for respiratory and/or heart failure treatment, and there have been many trials for development and clinical application in the world. Currently, a non-pulsatile blood pump is a standard for ECLS system. Although a pulsatile blood pump is advantageous in physiologic aspects, high pressure generated in the circuits and resultant blood cell trauma remain major concerns which make one reluctant to use a pulsatile blood pump in artificial lung circuits containing a membrane oxygenator. The study was designed to evaluate the hypothesis that placement of a pressure-relieving compliance chamber between a pulsatile pump and a membrane oxygenator might reduce the above mentioned side effects while providing physiologic pulsatile blood flow. The study was performed in a canine model of oleic acid induced acute lung injury (N=16). The animals were divided into three groups according to the type of pump used and the presence of the compliance chamber, In group 1, a non-pulsatile centrifugal pump was used as a control (n=6). In group 2 (n=4), a single-pulsatile pump was used. In group 3 (n=6), a single-pulsatile pump equipped with a compliance chamber was used. The experimental model was a partial bypass between the right atrium and the aorta at a pump flow of 1.8∼2 L/min for 2 hours. The observed parameters were focused on hemodynamic changes, intra-circuit pressure, laboratory studies for blood profile, and the effect on blood cell trauma. In hemodynamics, the pulsatile group II & III generated higher arterial pulse pressure (47$\pm$ 10 and 41 $\pm$ 9 mmHg) than the nonpulsatile group 1 (17 $\pm$ 7 mmHg, p<0.001). The intra-circuit pressure at membrane oxygenator were 222 $\pm$ 8 mmHg in group 1, 739 $\pm$ 35 mmHg in group 2, and 470 $\pm$ 17 mmHg in group 3 (p<0.001). At 2 hour bypass, arterial oxygen partial pressures were significantly higher in the pulsatile group 2 & 3 than in the non-pulsatile group 1 (77 $\pm$ 41 mmHg in group 1, 96 $\pm$ 48 mmHg in group 2, and 97 $\pm$ 25 mmHg in group 3: p<0.05). The levels of plasma free hemoglobin which was an indicator of blood cell trauma were lowest in group 1, highest in group 2, and significantly decreased in group 3 (55.7 $\pm$ 43.3, 162.8 $\pm$ 113.6, 82.5 $\pm$ 25.1 mg%, respectively; p<0.05). Other laboratory findings for blood profile were not different. The above results imply that the pulsatile blood pump is beneficial in oxygenation while deleterious in the aspects to high pressure generation in the circuits and blood cell trauma. However, when a pressure-relieving compliance chamber is applied between the pulsatile pump and a membrane oxygenator, it can significantly reduce the high circuit pressure and result in low blood cell trauma.