• 제목/요약/키워드: Biomedical Engineering convergence

검색결과 401건 처리시간 0.026초

Human-yeast genetic interaction for disease network: systematic discovery of multiple drug targets

  • Suk, Kyoungho
    • BMB Reports
    • /
    • 제50권11호
    • /
    • pp.535-536
    • /
    • 2017
  • A novel approach has been used to identify functional interactions relevant to human disease. Using high-throughput human-yeast genetic interaction screens, a first draft of disease interactome was obtained. This was achieved by first searching for candidate human disease genes that confer toxicity in yeast, and second, identifying modulators of toxicity. This study found potentially disease-relevant interactions by analyzing the network of functional interactions and focusing on genes implicated in amyotrophic lateral sclerosis (ALS), for example. In the subsequent proof-of-concept study focused on ALS, similar functional relationships between a specific kinase and ALS-associated genes were observed in mammalian cells and zebrafish, supporting findings in human-yeast genetic interaction screens. Results of combined analyses highlighted MAP2K5 kinase as a potential therapeutic target in ALS.

LSTM을 이용한 표면 근전도 분석을 통한 서로 다른 손가락 움직임 분류 정확도 향상 (Improvement of Classification Accuracy of Different Finger Movements Using Surface Electromyography Based on Long Short-Term Memory)

  • 신재영;김성욱;이윤성;이형탁;황한정
    • 대한의용생체공학회:의공학회지
    • /
    • 제40권6호
    • /
    • pp.242-249
    • /
    • 2019
  • Forearm electromyography (EMG) generated by wrist movements has been widely used to develop an electrical prosthetic hand, but EMG generated by finger movements has been rarely used even though 20% of amputees lose fingers. The goal of this study is to improve the classification performance of different finger movements using a deep learning algorithm, and thereby contributing to the development of a high-performance finger-based prosthetic hand. Ten participants took part in this study, and they performed seven different finger movements forty times each (thumb, index, middle, ring, little, fist and rest) during which EMG was measured from the back of the right hand using four bipolar electrodes. We extracted mean absolute value (MAV), root mean square (RMS), and mean (MEAN) from the measured EMGs for each trial as features, and a 5x5-fold cross-validation was performed to estimate the classification performance of seven different finger movements. A long short-term memory (LSTM) model was used as a classifier, and linear discriminant analysis (LDA) that is a widely used classifier in previous studies was also used for comparison. The best performance of the LSTM model (sensitivity: 91.46 ± 6.72%; specificity: 91.27 ± 4.18%; accuracy: 91.26 ± 4.09%) significantly outperformed that of LDA (sensitivity: 84.55 ± 9.61%; specificity: 84.02 ± 6.00%; accuracy: 84.00 ± 5.87%). Our result demonstrates the feasibility of a deep learning algorithm (LSTM) to improve the performance of classifying different finger movements using EMG.

췌장암 조기진단을 위한 조건부 확률 기반 지능형 진단 방식 (Intelligent Diagnosing Method Based on the Conditional Probability for the Pancreatic Cancer Early Detection)

  • 장익규;정준호;고재호;문현석;조영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권5호
    • /
    • pp.227-231
    • /
    • 2017
  • Early diagnosis of pancreatic cancer had been considered one of the important barrier for successful therapy since the five year survival rate after treatment of pancreatic cancer was critically low. Nonetheless, patients often miss the golden time of treatment because they rarely visit the hospital until their symptoms are severe. To overcome these problems, a lot of information about the patient's symptoms should be applied as biomarkers for early diagnosis. For this reason, a biomarker for early detection of pancreatic cancer (CA19-9) has been developed as a diagnostic kit. However, since the diagnosis is not accurate enough, pancreatic symptoms (abdominal pain, jaundice, anorexia, diabetes, etc.) and biomarkers (CA19-9) should be considered together. We develop an intelligent diagnostic system that considers CA19-9 and the incidence of pancreatic cancer for pancreatic symptoms that was determined by studying a large number of patient information. It shows a higher accuracy than one using CA19-9 alone. It may increase the survival rate of pancreatic cancer because it can diagnose pancreatic cancer early.

가상 심장 시뮬레이션에서 CPU와 GPU 병렬처리의 계산 성능 비교 (Computing Performance Comparison of CPU and GPU Parallelization for Virtual Heart Simulation)

  • 김상희;정다운;;임기무
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권3호
    • /
    • pp.128-137
    • /
    • 2020
  • Cardiac electrophysiology studies often use simulation to predict how cardiac will behave under various conditions. To observe the cardiac tissue movement, it needs to use the high--resolution heart mesh with a sophisticated and large number of nodes. The higher resolution mesh is, the more computation time is needed. To improve computation speed and performance, parallel processing using multi-core processes and network computing resources is performed. In this study, we compared the computational speeds of CPU parallelization and GPU parallelization in virtual heart simulation for efficiently calculating a series of ordinary differential equations (ODE) and partial differential equations (PDE) and determined the optimal CPU and GPU parallelization architecture. We used 2D tissue model and 3D ventricular model to compared the computation performance. Then, we measured the time required to the calculation of ODEs and PDEs, respectively. In conclusion, for the most efficient computation, using GPU parallelization rather than CPU parallelization can improve performance by 4.3 times and 2.3 times in calculations of ODEs and PDE, respectively. In CPU parallelization, it is best to use the number of processors just before the communication cost between each processor is incurred.

심근 세포의 전기생리학적 특징을 이용한 인공 신경망 기반 약물의 심장독성 평가 (An Artificial Neural Network-Based Drug Proarrhythmia Assessment Using Electrophysiological Characteristics of Cardiomyocytes)

  • 유예담;정다운;;임기무
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권6호
    • /
    • pp.287-294
    • /
    • 2021
  • Cardiotoxicity assessment of all drugs has been performed according to the ICH guidelines since 2005. Non-clinical evaluation S7B has focused on the hERG assay, which has a low specificity problem. The comprehensive in vitro proarrhythmia assay (CiPA) project was initiated to correct this problem, which presented a model for classifying the Torsade de pointes (TdP)-induced risk of drugs as biomarkers calculated through an in silico ventricular model. In this study, we propose a TdP-induced risk group classifier of artificial neural network (ANN)-based. The model was trained with 12 drugs and tested with 16 drugs. The ANN model was performed according to nine features, seven features, five features as an individual ANN model input, and the model with the highest performance was selected and compared with the classification performance of the qNet input logistic regression model. When the five features model was used, the results were AUC 0.93 in the high-risk group, AUC 0.73 in the intermediate-risk group, and 0.92 in the low-risk group. The model's performance using qNet was lower than the ANN model in the high-risk group by 17.6% and in the low-risk group by 29.5%. This study was able to express performance in the three risk groups, and it is a model that solved the problem of low specificity, which is the problem of hERG assay.

관형 요도 조직 대상 내시경적 레이저 조사 조건 연구 (Endoscopic Laser Irradiation Condition of Urethra in Tubular Structure)

  • 신화랑;임성희;이예찬;강현욱
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권1호
    • /
    • pp.85-91
    • /
    • 2023
  • Stress urinary incontinence (SUI) occurs when abdominal pressure increases, such as sneezing, exercising, and laughing. Surgical and non-surgical treatments are the common methods of SUI treatment; however, the conventional treatments still require continuous and invasive treatment. Laser have been used to treat SUI, but excessive temperature increase often causes thermal burn on urethra tissue. Therefore, the optimal conditions must be considered to minimize the thermal damage for the laser treatment. The current study investigated the feasibility of the laser irradiation condition for SUI treatment using non-ablative 980 nm laser from a safety perspective through numerical simulations. COMSOL Multiphysics was used to analyze the numerical simulation model. The Pennes bioheat equation with the Beer's law was used to confirm spatio-temporal temperature distributions, and Arrhenius equation defined the thermal damage caused by the laser-induced heat. Ex vivo porcine urethral tissue was tested to validate the extent of both temperature distribution and thermal damage. The temperature distribution was symmetrical and uniformly observed in the urethra tissue. A muscle layer had a higher temperature (28.3 ℃) than mucosal (23.4 ℃) and submucosal layers (25.5 ℃). MT staining revealed no heat-induced collagen and muscle damage. Both control and treated groups showed the equivalent thickness and area of the urethral mucosal layer. Therefore, the proposed numerical simulation can predict the appropriate irradiation condition (20 W for 15 s) for the SUI treatment with minimal temperature-induced tissue.

초음파 이용 거리측정을 위한 센서 개발에 관한 연구 (Study on the Development of Sensors for Distance Measure Using Ultrasonic)

  • 박근철;이승희;박창수;김동원;김원택;전계록
    • 센서학회지
    • /
    • 제23권1호
    • /
    • pp.46-50
    • /
    • 2014
  • In this paper, we report a novel algorithm based on phase displacement, which supplements conventional TOF methods for distance measurement using an ultrasonic wave. The proposed algorithm roughly measures the distance between the transmission part and the receiving part by using the initial TOF. Thereafter, the precise distance is determined by measuring the phase displacement value between the synchronizing transmission signal and the signal obtained at the receiving end. A distance measurement experiment using a micrometer was performed to verify the accuracy of the ultrasonic wave sensor system. We found that the mean errors from the one adopting the distance measurement algorithm based on phase displacement varied from a minimum of 0.03 mm to a maximum of 0.09 mm. In addition, the standard deviation varied from a minimum of 0.04 mm to a maximum of 0.07 mm, thus giving a precision of ${\pm}0.1$ mm.

3차원 지지체 제작을 위한 다중 분사체 노즐 바이오프린팅 시스템 개발 (Development of a Multi-nozzle Bioprinting System for 3D Scaffold Fabrication)

  • 박상훈;김성준;송승준;최재순
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권6호
    • /
    • pp.271-275
    • /
    • 2015
  • The aim of this study was to develop a multi-nozzle based bioprinting system for fabrication of three-dimensional (3D) biological structure. In this study, a thermoplastic biomaterial that has relatively high mechanical stability, polycaprolactone (PCL) was used to make the 3D structure. A multi-nozzle bioprinting system was designed to dispense thermoplastic biomaterial and hydrogel simultaneously. The system that consists of 3-axes of x-y-z motion control stage and a compartment for injection syringe control mounted on the stage has been developed. Also, it has 1-axis actuator for position change of nozzle. The controllability of the printed line width with PCL was tested as a representative performance index.

Design and Implementation of Magnetic Stimulation Device Suitable for Herpes Zoster and Post Herpetic Neuralgia

  • Tack, Han-Ho;Kim, Gye-Sook;Kim, Whi-Young
    • 한국정보기술학회 영문논문지
    • /
    • 제10권2호
    • /
    • pp.199-214
    • /
    • 2020
  • An important technique of the present invention is primarily to parallel light detection, self-pulse therapy after diagnosis. Herpes zoster is a disease caused by varicella zoster virus, and the virus that has been latent in the dorsal root ganglion that controls the skin segment loses its immune system and physically damages it. It is an acute skin disease in which acute pain and bullous rash occur along the sensory ganglia, which are rehab by inducers such as malignant tumors. Dorsal root ganglion after complete recovery of varicella, relapsed after incubation in brain ganglion, latent virus sometimes suppressed activity by cell mediated immunity, and in cell ganglion with reduced cellular immunity. It proliferates and destroys neurons, causing pain while forming a rash and blisters. This can reduce cell necrosis and increase the phagocytosis and enzymatic activity through the movement of ions through the cell membrane, depolarization and membrane potential change, growth factor secretion, calcium ion transfer, chondrocyte synthesis, etc., And may offer treatment options for lesions of herpes zoster and post-herpetic neuralgia (PHN).Therefore, according to the present research, the diagnosis and treatment device of treating paing for herpes zoster and post-herpetic pain can be implemented in the early stage of herpes zoster, and conventional analgesic regulation, anti-inflammatory effect, post-herpetic neuralgia.

세포 함유 젤라틴 파이버 응용을 통한 골 재생 유도용 인산칼슘 생체재료 세포 탑재 연구 (Cell-laden Gelatin Fiber Contained Calcium Phosphate Biomaterials as a Stem Cell Delivery Vehicle for Bone Repair)

  • 김선화;황창모;박상혁
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권1호
    • /
    • pp.61-70
    • /
    • 2022
  • Natural and synthetic forms of calcium phosphate cement (CPC) have been widely used in bone repair and augmentation. The major challenge of injectable CPC is to deliver the cells without cell death in order to regenerate new bone. The study objective was to investigate for the potential of stem cell-laden gelatin fibers containing injectable, nanocrystalline CPC to function as a delivery system. Gelatin noddle fiber method was developed to delivered cells into nCPC. Experimental groups were prepared by mixing cells with nCPC, mixing cell-laden gelatin fibers with nCPC and mixing cell-laden gelatin fibers containing BMP-2 with nCPC. Media diffusion test was conducted after dissolving the gelatin fibers. SEM examined the generated channels and delivered cell morphology. Fibers mixed with nCPC showed physical setting and hardening within 20 min after injection and showed good shape maintenances. The gelatin fibers mixed nCPC group had several vacant channels generated from the dissolved gelatin. Particularly, proliferation and attachment of the cells were observed inside of the channels. While live cells were not observed in the cell mixed nCPC group, cells delivered with the gelatin fibers into the nCPC showed good viability and increased DNA content with culture. Cell-laden gelatin fiber was a novel method for cell delivery into nCPC without cell damages. Results also indicated the osteogenic differentiation of gelatin fiber delivered cells. We suggest that the cell-laden gelatin fibers mixed with nCPC can be used as an injectable cell delivery vehicle and the addition of BMP-2 to enhances osteogenesis.