• Title/Summary/Keyword: Biomedical Engineering

Search Result 7,011, Processing Time 0.031 seconds

Development of a Respiration Sensor Using Plastic Optical Fiber (플라스틱 광섬유를 이용한 호흡센서의 개발)

  • Yoo, Wook-Jae;Baek, Ji-Yun;Cho, Dong-Hyun;Jang, Kyoung-Won;Seo, Jeong-Ki;Heo, Ji-Yeon;Lee, Bong-Soo;Cho, Young-Ho;Park, Byung-Gi;Moon, Joo-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.489-494
    • /
    • 2009
  • In this study, we fabricated a plastic optical fiber based sensor which can monitor the respiration of a patient. The circumference changes of the abdomen were measured using a mirror, a light source and optical detectors because the circumferences of the abdomen could be varied with respiration. The intensity of the reflected lights were measured according to the changes of distance between mirror and plastic optical fiber connected to a light source and a photodiode-amplifier system using a Y-coupler. The respiration signals of fiber-optic sensor system were compared with those of the respiratory and temperature transducers of the $BIOPAC^{(R)}$ system. It is expected that a fiber-optic respiration sensor could be developed for real time respiration monitoring during MRI procedure based on this study.

Measurement of Relative Depth dose of Therapeutic Photon Beam Using One-Dimensional Fiber-Optic Phantom Dosimeter (1차원 광섬유 팬텀선량계를 이용한 치료용 광자선의 피부 및 선량보강영역에서 상대선량 측정)

  • Moon, Jin-Soo;Jang, Kyoung-Won;Yoo, Wook-Jae;Seo, Jeong-Ki;Park, Jang-Yeon;Cho, Young-Ho;Lee, Bong-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.96-101
    • /
    • 2011
  • In this study, we fabricated a fiber-optic phantom dosimeter by arraying square type of plastic optical fibers in a PMMA phantom for measuring relative depth doses of therapeutic photon beams. To minimize the cross-talk between fiber-optic dosimeters, we selected appropriate septum by measuring leaked scintillating lights according to the various kinds of septa. In addition, we measured percentage depth doses of 6, 15 MV photon beams using a fiber-optic phantom dosimeter.

An Array-Type RGB Sensor for Precision Measurement of pH

  • Kim, Ji-Sun;Oh, Han-Byeol;Kim, A-Hee;Kim, Jun-Sik;Lee, Eun-Suk;Goh, Bong-Jun;Choi, Ju-Hyeon;Shin, Ye-Ji;Baek, Jin-Young;Lee, Ki Sung;Jun, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.700-704
    • /
    • 2015
  • As pH is a widely used index in chemical, medical, and environmental applications, research on pH sensors has been active in recent years. This study obtained RGB values by measuring the reflected light from a liquid sample to detect fine changes in pH, and performed mathematical modeling to investigate the relationship between the detected optical signal and pH value. Also, the trends in pH changes were easily identified by analyzing RGB values and displaying them in the color coordinate for easy visualization of data. This method implemented a user-friendly system that can measure and analyze in real time. This system can be used in many fields such as genetic engineering, environmental engineering, and clinical engineering, because it not only can measure pH but also replaces a colorimeter or turbidimeter.

An Optical Technique for Concentration Measurement by Color Analysis (반사형 소자를 이용한 시료의 컬러정보 및 농도분석)

  • Lee, Tae-Hee;Kim, Ji-Sun;Jung, Gu-In;Choi, Ju-Hyeon;Oh, Han-Byeol;Kim, A-Hee;Jung, Hyon-Chel;Cho, Yeong Bin;Jun, Jae-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1121-1127
    • /
    • 2014
  • Many studies have been done to measure and analyze color for various purposes. Visual assessment has lack of objectivity and the equipment for color measurement is very expensive. In this study, we developed a device for quantitative analysis of the color using optical elements. With the color sensor, the ratio of RGB was calculated by measuring the light intensity that is reflected from an object. Inverse transformation of optical signal was performed to detect the color density. The suggested color analyzer can detect color information as well as sample concentration. Results of this study are expected to be used in various medical fields such as pH indicator and urine analysis.

A proposal for Biomedical Engineering Laboratory Class as a Part of a Novel Curriculum for Biomedical Engineering Education (새로운 학부 의공학 교육과정의 일환으로 의공학 실험과목의 제안)

  • Park, Hyun-Jin;Chee, Young-Joon;Seo, Jong-Bum
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.4
    • /
    • pp.289-294
    • /
    • 2011
  • Laboratory class is an integral part of biomedical engineering education. Current biomedical engineering curriculum in Korea mostly includes mandatory laboratory classes. Most of the Korean biomedical laboratory classes focus on electrical engineering aspects, while molecular/biological engineering aspects are neglected. Many leading universities in U.S.A. offer a more balanced laboratory class where both electrical engineering aspects and molecular/biological engineering aspects are considered. As a part of an effort to enhance undergraduate biomedical engineering education, a new biomedical engineering laboratory class is proposed to offer a more balanced laboratory learning experience.

Real-time Measurements of Water Level and Temperature using Fiber-optic Sensors Based on an OTDR (광섬유와 OTDR을 이용한 실시간 수위 및 온도 측정)

  • Sim, Hyeok In;Yoo, Wook Jae;Shin, Sang Hun;Jang, Jaeseok;Kim, Jae Seok;Jang, Kyoung Won;Cho, Seunghyun;Moon, Joo Hyun;Lee, Bongsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1239-1244
    • /
    • 2014
  • In this study, two fiber-optic sensors were fabricated to measure water level and temperature using optical fibers, a coupler, a Lophine and an OTDR (optical time-domain reflectometer). First, using Fresnel's reflection generated at the distal-ends of each optical fiber, which was installed at different depth, we measured the water level according to the variation of water level. Next, we also measured the temperature of water using a temperature sensing probe based on the Lophine, whose absorbance changes with the temperature. The measurable temperature range of the fiber-optic sensor is from $5^{\circ}C$ to $65^{\circ}C$ because the maximum operation temperature of the optical fiber without a physical deterioration is up to $80^{\circ}C$.

Fabrication and Characterization of a Fiber-Optic Alpha/Beta Detector for Nuclear Medicine Application (핵의학 적용을 위한 광섬유 기반의 알파/베타 검출기의 제작 및 특성분석)

  • Hong, Seung-Han;Yoo, Wook-Jae;Shin, Sang-Hun;Seo, Jeong-Ki;Han, Ki-Tek;Jeon, Da-Yeong;Cho, Seung-Hyun;Lee, Bong-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.367-373
    • /
    • 2012
  • We fabricated a fiber-optic alpha/beta detector, which is composed of a sensing probe, a plastic optical fiber, a photomultiplier tube, and a multichannel analyzer, to obtain the energy spectra of radioactive isotopes. As inorganic scintillators of a sensing probe, a ZnS(Ag) film was coupled with a $CaF_2$(Eu) crystal for alpha and beta spectroscopy. In this study, $^{210}Po$ and $^{90}Sr$ were used as alpha and beta sources, respectively, and we measured the radiation energy spectra using a fiber-optic alpha/beta detector to identify alpha and beta emitting radionuclides for nuclear medicine application. Also, the variations of energy spectrum were obtained according to the length of plastic optical fiber.

Measurements of temperature distribution using an infrared optical fiber during radiofrequency ablation (적외선 투과 광섬유를 이용한 고주파 열치료 과정에서의 온도분포 측정)

  • Yoo, Wook-Jae;Seo, Jeong-Ki;Cho, Dong-Hyun;Jang, Kyoung-Won;Shin, Sang-Hun;Lee, Bong-Soo;Tack, Gye-Rae;Park, Byung-Gi;Moon, Joo-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.397-405
    • /
    • 2008
  • In this study, we have measured temperature distribution using infrared optical fibers during radiofrequency ablation (RFA). Infrared radiations generated from the water around inserted electrode are transferred by silver halide optical fibers and are measured by a thermopile sensor. Also, the output voltages of a thermopile sensor are compared with those of the thermocouple recorder. It is expected that a noncontact temperature sensor using an infrared optical fiber can be developed for the temperature monitoring during RFA treatments based on the results of this study.