• Title/Summary/Keyword: Biomedical Applications

Search Result 772, Processing Time 0.043 seconds

Synthesis and Functionalization of Upconversion Nanoparticles for Bioimaging (바이오 이미징을 위한 업컨버전 나노입자(upconversion nanoparticles)의 합성 및 특성화)

  • Cho, Hye In;Lee, Jae-Seung
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.270-282
    • /
    • 2018
  • The increasing importance of biomedical imaging technology has led to the development of a variety of luminescent materials, including molecular fluorophores, fluorescent proteins, and quantum dots. Owing to their inherent disadvantages, such as insufficient chemical stability and limited biocompatability, their utilization has been limited with imaging only under highly optimized and controlled conditions. Recently, a new class of luminescent nanoparticles, upconversion nanoparticles (UCNPs), have been emerging as a practically useful nanoprobe for various bioimaging applications. The detailed synthesis, functionalization, properties and in-vitro / in-vivo applications of the UCNPs are introduced and discussed in this Review.

A Review of the Fabrication of Soft Structures with Three-dimensional Printing Technology (3차원 프린팅 기술을 이용한 연성 구조물 제작)

  • Jang, Jinah;Cho, Dong-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.142-148
    • /
    • 2015
  • 3D printing technology is a promising technique for fabricating complex 3D architectures based on the CAD/CAM system, and it has been extensively investigated to manufacture structures in the fields of mechanical engineering, space technology, automobiles, and biomedical and electrical applications. Recent advances in the 3D printing of soft structures have received attention for the application of the construction of flexible sensors of soft robotics or the recreation of tissue/organ-specific microenvironments. In this review paper, we would like to focus on delivering state-of-the-art fabrication of soft structures with 3D printing technology and its various applications.

Pulsed laser surface modification for heat treatment and nano-texturing on biometal surface

  • Jeon, Hojeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.118.1-118.1
    • /
    • 2016
  • The laser surface modification has been reported for its functional applications for improving tribological performance, wear resistance, hardness, and corrosion property. In most of these applications, continuous wave lasers and pulsed lasers were used for surface melting, cladding, alloying. Since flexibility in processing, refinement of microstructure and controlling the surface properties, technology utilizing lasers has been used in a number of fields. Especially, femtosecond laser has great benefits compared with other lasers because its pulsed width is much shorter than characteristic time of thermal diffusion, which leads to diminish heat affected zone. Moreover, laser surface engineering has been highlighted as an effective tool for micro/nano structuring of materials in the bio application field. In this study, we applied femtosecond and nanosecond pulsed laser to treat biometals, such as Mg, Mg alloy, and NiTi alloy, by heating to improve corrosion properties and functionalize their surface controlling cell response as implantable biomedical devices.

  • PDF

Present status of Standardization of Diamond-like Carbon Coating in Japan

  • Hiratsuka, Masanori;Ohtake, Naoto;Saitoh, Hidetoshi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.12.2-12.2
    • /
    • 2011
  • Diamond-like carbon (DLC) coatings are used nowadays in various applications such as a protective coating against wear or corrosion in automotive parts, and recently its use is more and more apparent in particular biomedical applications [1]. The Japanese Ministry of Economy, Trade and Industry has started a program of collaborative study for industrial standardization of DLC films and their evaluation techniques. Japan New Diamond Forum (JNDF), Nanotec Corporation and the Nagaoka University of Technology are conducting this program. This project includes national organizations (businesses, universities, and research facilities), encompassing a wide range of requirements. JNDF organize Japanese project committee and working group. The purpose of this report is to discuss standardization and classification of DLC coatings.

  • PDF

Emerging Frontiers of Graphene in Biomedicine

  • Byun, Jonghoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 2015
  • Graphene is a next-generation biomaterial with increasing biomedical applicability. As a new class of one-atom-thick nanosheets, it is a true two-dimensional honeycomb network nanomaterial that attracts interest in various scientific fields and is rapidly becoming the most widely studied carbon-based material. Since its discovery in 2004, its unique optical, mechanical, electronic, thermal, and magnetic properties are the basis of exploration of the potential applicability of graphene. Graphene materials, such as graphene oxide and its reduced form, are studied extensively in the biotechnology arena owing to their multivalent functionalization and efficient surface loading with various biomolecules. This review provides a brief summary of the recent progress in graphene and graphene oxide biological research together with current findings to spark novel applications in biomedicine. Graphene-based applications are progressively developing; hence, the opportunities and challenges of this rapidly growing field are discussed together with the versatility of these multifaceted materials.

Polymers with Phosphodiester Bonds: from Models of Biopolymers to Liquid Membranes and Polymer-Inorganic Hybrids

  • Penczek, Stanislaw
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.89-89
    • /
    • 2006
  • Polyalkylene phosphates - polymers that are built on the repeating unit of the diester of phosphoric acid: -[OP(O)(OH)Oalkylene]-, are known to form backbones of nucleic and teichoic acids. Various synthetic ways will be reported for the synthesis of the bare chains, where "alkylene" in the formula above means mostly two or three methylene groups. Some other structures have also been prepared. Several applications of these polymers are to be discussed, namely as liquid membranes, as components of two-block copolymers (ionic-nonionic diblock dihydrophilic) used as modifiers of CaCO3 crystallization, and as components of the inorganic-polymer hybrid materials. Some other applications in the biomedical field will also be discussed.

  • PDF

A review of zinc oxide photoanode films for dye-sensitized solar cells based on zinc oxide nanostructures

  • Tyona, M.D.;Osuji, R.U.;Ezema, F.I.
    • Advances in nano research
    • /
    • v.1 no.1
    • /
    • pp.43-58
    • /
    • 2013
  • Zinc oxide (ZnO) is a unique semiconductor material that exhibits numerous useful properties for dye-sensitized solar cells (DSSCs) and other applications. Various thin-film growth techniques have been used to produce nanowires, nanorods, nanotubes, nanotips, nanosheets, nanobelts and terapods of ZnO. These unique nanostructures unambiguously demonstrate that ZnO probably has the richest family of nanostructures among all materials, both in structures and in properties. The nanostructures could have novel applications in solar cells, optoelectronics, sensors, transducers and biomedical sciences. This article reviews the various nanostructures of ZnO grown by various techniques and their application in DSSCs. The application of ZnO nanowires, nanorods in DSSCs became outstanding, providing a direct pathway to the anode for photo-generated electrons thereby suppressing carrier recombination. This is a novel characteristic which increases the efficiency of ZnO based dye-sensitized solar cells.

Polyelectrolyte Complexes : Interaction between ${\gamma}$-hydroxybutyric acid (GHB) and chitosan (고분자 전해질 콤플렉스 : 감마 히드록시부틸산과 키토산의 상호작용)

  • Lee, Kwang-Soon;Son, Tae-Won;Kim, Young-Hun;Jeong, Min-Gi;Park, Yong-Hyeok
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.217-218
    • /
    • 2003
  • Oppositely charged polyelectrolytes are generally known to form sbalbe interpolymer complexs. Such polyelectrolyte complexes are high practical relevance in industrial applications as flocculants, coatings, and binders, as well as in biological systems and in biomedical applications. Most insoluble polyelectrolyte complexes seem to exhibit 1:1 charge stoichiometry, independent of the charge density on the macromolecules and the structure of their backbones, provided that all charged groups are accessible for electrostatic interactions. (omitted)

  • PDF

Nanobiotechnology, Today and Tomorrow (나노바이오공학의 오늘과 내일)

  • Lee, Chang-Soo;Park, Hyun-Kyu;Kim, Moon-Il
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.223-231
    • /
    • 2006
  • Nanobiotechnology, the interdisciplinary area at the crossroad of biotechnology and nanoscience, combines contributions from molecular and cell biology, chemisty, material science, and physics in an attempt to understand the behavior of nanobiomaterials, their development and applications. At present, nanobiotechnology is believed to hold great promise for improving health and prolonging life, faciliating biomarker discovery, molecular diagnostics, discovery of novel drugs and drug delivery, which are important basic components of biomedical science. In the recent trend of nanobiotechnology, this review is intended to provide a better understanding of nanobiotechnology in its applications and perspectives, separating this integration technology into three parts such as nanobiochip/sensor, nanobiomaterials, and nanobioanalysis in order to hopefully gain insights into why size matters, how nano-materials and -devices can be engineered.

Myocardial tissue engineering using electrospun nanofiber composites

  • Kim, Pyung-Hwan;Cho, Je-Yoel
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.26-36
    • /
    • 2016
  • Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful cardiovascular tissue regeneration systems, new technologies must be introduced to improve myocardial regeneration. Electrospinning is a simple, versatile technique for fabricating nanofibers. Here, we discuss various biodegradable polymers (natural, synthetic, and combinatorial polymers) that can be used for fiber fabrication. We also describe a series of fiber modification methods that can increase cell survival, proliferation, and migration and provide supporting mechanical properties by mimicking micro-environment structures, such as the extracellular matrix (ECM). In addition, the applications and types of nanofiber-based scaffolds for myocardial regeneration are described. Finally, fusion research methods combined with stem cells and scaffolds to improve biocompatibility are discussed. [BMB Reports 2016; 49(1): 26-36]