• Title/Summary/Keyword: Biomechanical study

Search Result 664, Processing Time 0.034 seconds

BIOMECHANICAL EVALUATION ON BONE REGENERATION IN MANDIBULAR DISTRACTION OSTEOGENESIS COMBINED WITH COMPRESSION STIMULATION (하악골 신장술에서 압축자극을 통한 골 재생방식에 대한 생체 역학적 평가)

  • Heo, June;Kim, Uk-Kyu;Hwang, Dae-Seok;Kim, Yong-Deok;Shin, Sang-Hun;Chung, In-Kyo;Kim, Cheol-Hun;Yun, Seok-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.5
    • /
    • pp.470-478
    • /
    • 2007
  • The purpose of this study was to investigate the clinical, biomechanical, and histologic changes in new distraction osteogenesis(DO) technique combined with a compression stimulation in accordance to different compression-distraction force ratio. 23 adult male rabbits underwent open-osteotomy at the mandibular body area and a external distraction device was applied. In the control group of 8 rabbits, only a 8 mm of distraction was performed by conventional DO technique. In an experimental group of 15 rabbits, a distraction followed by a compression force was performed according to the ratio of compression-distraction suggested by authors. The rate of experimental group I was set up as a 2 mm compression versus 10 mm distraction and the rate of experimental group II was set up as a 3 mm compression versus 11 mm distraction. All the rabbits were sacrificed for a gross finding, biomechanical, histomorphometric and histologic findings at the time of 55 days from the operation day. The results were as follows: 1. On the gross findings, because all rabbits had a sufficient healing time, every distracted new bone had good bone quality and we could not find any difference among all three groups. 2. In the histologic findings, rapid bone maturation(wide lamellar bone formation in the cancellous and cortical bone areas) was observed in two experimental groups compared to the control group. 3. On the bone density tests, the experimental group II showed higher bone density than the other experimental group and control group(control group-$0,2906g/cm^2$, experimental group I-$0.2961g/cm^2$, experimental group II-$0.3328g/cm^2$). 4. On the biomechanical tests, the experimental group II had significantly higher bone microhardness than the other experimental group and control group(control group-252.7 MPa, experimental group I-263.5 MPa, experimental group II-426.0 MPa). 5. On the microhardness tests, when we compared the hardness ratio of distracted bone versus normal bone, we could find experimental group II had significantly higher hardness ratio than the other experimental group and control group(control group-0.47, experimental group I-0.575, experimental group II-0.80). From this study, we could deduce that the modified distraction osteogenesis method with a compression stimulation might improve the quality of bone regeneration and shorten the consolidation period in comparison with conventional distraction osteogenesis techniques.

Short-Term Clinical Effects of Robot-Assisted Gait Training Applied to Patients Undergoing Lower Extremity Surgery: A Pilot Study (하지 수술환자에게 적용한 로봇보조 보행훈련의 단기간 임상적 효과: 예비 연구)

  • Lee, Ha-Min;Kwon, Jung-Won
    • PNF and Movement
    • /
    • v.20 no.2
    • /
    • pp.295-306
    • /
    • 2022
  • Purpose: This study aimed to investigate the effect of robot-assisted gait training on the active ranges of motion, gait abilities, and biomechanical characteristics of gait in patients who underwent lower extremity surgery, and to verify the effectiveness and clinical usefulness of robot-assisted gait training. Methods: This study was conducted on 14 subjects who underwent lower extremity surgery. The subjects participated in robot-assisted gait training for 2 weeks. The active ranges of motion of the lower extremities were evaluated, and gait abilities were assessed using 10-m and 2-min walk tests. An STT Systems Inertial Measurement Unit was used to collect data on biomechanical characteristics during gait. Spatiotemporal parameters were used to measure cadence, step length, and velocity, and kinematic parameters were used to measure hip and knee joint movement during gait. Results: Significant improvements in the active ranges of motion of the hip and knee joints (flexion, extension, abduction, and adduction) and in the 10-m and 2-min walk test results were observed after robot-assisted gait training (p < 0.05). In addition, biomechanical characteristics of gait, spatiotemporal factors (cadence, step length, and velocity), and kinematic factors (gait hip flexion-extension, internal rotation-external rotation angle, and knee joint flexion-extension) were also significantly improved (p < 0.05). Conclusion: The results of this study are of clinical importance as they demonstrate that robot-assisted gait training can be used as an effective intervention method for patients who have undergone lower extremity surgery. Furthermore, the findings of this study are clinically meaningful as they expand the scope of robot-assisted gait training, which is currently mainly applied to patients with central nervous system conditions.

Biomechanical Fatigue Analysis of Cervical Plate Systems by using a Computer Simulation Based on Finite Element Method (유한요소법을 이용한 척추 삽입형 경추판 시스템에 대한 생체역학적 피로해석)

  • Kim, Sung-Min;Yang, In-Chul;Cho, Sung-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.96-103
    • /
    • 2008
  • In this study, we performed the biomechanical analysis of cervical plate systems by using a computer simulation based on finite element method to derive reliable model by analysis of design variables and fatigue behavior. To simulate the cervical spine movement in-vivo state by surgery, we modeled the cervical plate system which consisted of screws, rings, rivets, and plate and Ultra High Molecular Weight Polyethylene (UHMWPE) Block. The experiment of cervical plate system followed the ASTM F1717 standards that covered the materials and methods for the static and fatigue testing. The result of computer simulation is compared with experimented test. We expected this study is to derive reliable results by analysis of design variables and fatigue behavior for developing a new model.

The Study on a Biomechanical Model for Automotive Seat Design (자동차 SEAT DESIGN을 위한 BIOMECHANICAL MODEL 연구)

  • 신학수;최출헌
    • Proceedings of the ESK Conference
    • /
    • 1998.04a
    • /
    • pp.149-154
    • /
    • 1998
  • The design of seat is maintaining to final stable posture. The final stable posture is the seated posture in which the force of the pad and spring supporting the body is balanced with the body weight and the bodydoes not sink anyfurther intothe seat. With poorly designed seated seats, your behind maygradually move forward, or localized pressure may result in congestion of the blood or numbness, making you want to move. Therefore, the final stable posture is not maintained. A number of ideas were used in this study will eliminate this problem. In automobile seat design, primary attention has forcused on providing the occupant with a comfortable seat that has sufficient padding and adjuxtments toaccomodate different sizes and postures of people. First of all, whether the process is design-oriented or technology-oriented, the design concept must be human-oriented. The fatigue-alleviating seats which were the primary purpose of this research were studied with a human-oriented approach.

  • PDF

The study on microslip using a signal detection theory

  • Son, D.H.;Li, K.W.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.51-55
    • /
    • 1991
  • Since slipping has been identified as a major hazard, it is important to understand the mechanism of a slip. Many researches, based on biomechanical studies, had been attempted to do that. Thowever, the correlation between the mechanism of a slip and psychophysical behaviors of people had rarely been verified. For example, the existence of small slips in a forward direction, which do not normally perceived by human subjects, has been established by several experimenters. However, the term "microslips are not perceived by the walkers[4]." has not been examined precisely by any experiments. The objective of this study is, using a Signal Detection Theory (SDT), to define a microslip and slip more quqntitatively with the biomechanical measurement of slip distance. The results showed that, the slip distance around the 3 centimeters, there was a obvious change in the accident detectability of the subject. The conclusion is that it is possible to identify the boundary of a microslip and slip around the 3 centermeters of slip distance.

  • PDF

A Study on the Stress and Strain Analysis of Human Muscle Skeletal Model in Kendo Three Typical Attack Motions (세 가지 주요 검도 공격 동작에서의 근-골격계 응력과 번형률 해석에 관한 연구)

  • Lee, Jung-Hyun;Lee, Young-Shin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.126-134
    • /
    • 2008
  • Kendo is one of the popular sports in modem life. Head, wrist and thrust attack are the fast skill to get a score on a match. Human muscle skeletal model was developed for biomechanical study. The human model was consists with 19 bone-skeleton and 122 muscles. Muscle number of upper limb, trunk and lower limb part are 28, 60, 34 respectively. Bone was modeled with 3D beam element and muscle was modeled with spar element. For upper limb muscle modelling, rectus abdominis, trapezius, deltoideus, biceps brachii, triceps brachii muscle and other main muscles were considered. Lower limb muscle was modeled with gastrocenemius, gluteus maximus, gluteus medius and related muscles. The biomechanical stress and strain analysis of human muscle was conducted by proposed human bone-muscle finite element analysis model under head, wrist and thrust attack for kendo training.

Development on Human Muscle Skeletal Model and Stress Analysis of Kumdo Head Hitting Motion (검도 머리치기 동작의 인체 근골격 모델개발 및 응력해석)

  • Lee, Jung-Hyun;Lee, Se-Hoon;Lee, Young-Shin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.116-125
    • /
    • 2007
  • Human muscle skeletal model was developed for biomechanical study. The human model was consists with 19 bone-skeleton and 122 muscles. Muscle number of upper limb, trunk and lower limb part are 28, 60, 34 respectively. Bone was modeled with 3D beam element and muscle was modeled with spar element. For upper limb muscle modelling, rectus abdominis, trapezius, deltoideus, biceps brachii, triceps brachii muscle and other main muscles were considered. Lower limb muscle was modeled with gastrocenemius, gluteus maximus, gluteus medius and related muscles. The biomechanical stress and strain analysis of human was conducted by proposed finite element analysis model under Kumdo head hitting motion. In this study structural analysis has been performed in order to investigate the human body impact by Kumdo head hitting motion. As the results, the analytical displacement, stress and strain of human body are presented.

An Evaluation of Automobile Assembly Jobs for Low Back Injury (자동차 조립 작업에서의 직업성 요추부염좌의 위험도에 대한평가)

  • Park, Dong-Hyun;Hur, Kuk-Kang
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.2
    • /
    • pp.40-52
    • /
    • 2000
  • The aim of this study was to evaluate the prevailing ergonomic conditions regarding low back injury in an assembly factory, In this study, analytic biomechanical model and NIOSH guidelines were applied to evaluate risk levels of low back injury for automobile assembly jobs. Total of 246 workers were analysed. There were 10 jobs with greater back compressive forces than 350kg at L5/S1. Also there were 44 jobs over Action Limit in terms of 1981 NIOSH guidelines. This could in part be explained by the ergonomic conditions of the companys analysed as not hazardous, with a relatively low duration of 'combined' extreme work posture. However, more ergonomic intervention could be done based on those results.

  • PDF

Effect of Biomechanical Intervention based on Custom Seating System on Activities of Mouse Click for Children with Cerebral Palsy (맞춤형 착석장치를 통한 생체역학적 중재가 뇌성마비 아동의 마우스 클릭 동작에 미치는 영향)

  • Jeong, Dong-Hoon
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.57-65
    • /
    • 2012
  • Purpose: This study was to investigate the effect of biomechanical intervention, based on the custom seating system on the activities of a mouse click for children with cerebral palsy. Methods: Thirteen children with cerebral palsy participated in this study. We compared reaction time and frequency for proper mouse click in the subject's typical position, in addition to an intervention position. The intervention position conformed to the principle and practice of research on promoting the upper-extremity movement and postural control. The intervention position was achieved through an external postural support, which was based on the custom seating system. Results: Reaction time and frequency for proper mouse click were moderately improved in the intervention position, compared with that of the typical position. There was a statistically significant difference between the typical position and that of the intervention position (p<0.05). Conclusion: Results provide evidence of the positive effects of functional seating on the activities of a mouse click for children with cerebral palsy.

A study on the finite element modeling of femur based marching cube algorithm (Marching cube 알고리즘을 이용한 대퇴골의 유한요소 모델링에 관한 연구)

  • 곽명근;오택열;변창환;이은택;유용석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1074-1077
    • /
    • 2002
  • Biomechanical behavior of the human femur is very important in various clinical situations. In this study, the data of FE models based on DICOM file exported from Computed tomography(CT). We generated FE models(voxel model, tetra model) of human femur using CT slide image. We compared them with Yon Mises stress results derived from finite element analysis(FEA). Comparing the two models, we found a correlation of them. As a result, the tetra model based proposed marching cube algorithm is a valid and accurate method to predict parameters of the complex biomechanical behavior of human femur.

  • PDF