• Title/Summary/Keyword: Biomechanical model

Search Result 232, Processing Time 0.022 seconds

Tetrahedral Mesh Generation from CT Images of Thoracic Vertebra (흉추 CT 영상으로부터 사면체 요소망의 자동생성)

  • 박정민;권기환;전성재;채수원;이관행;이태수;서중근;박정율
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.150-153
    • /
    • 2002
  • The use of the finite element method for biomechanical analysis is increasing rapidly in recent years. Since biomechanical models are usually in very complex shapes, it takes a lot of time and efforts to build reasonable finite element models. In this paper, a new tetrahedral meshing algorithm from the series of 2-D computed tomography(CT) images has been proposed. In this scheme, the planar sections of three-dimensional objects and the side surfaces between two planar sections are triangulated first, and then an advancing front algorithm is employed to construct tetrahedral elements by using basic operators. A sample finite element model for thoracic vertebra is presented.

  • PDF

Biomechanical Model of Hand to Predict Muscle Force and Joint Force (근력과 관절력 예측을 위한 손의 생체역학 모델)

  • Kim, Kyung-Soo;Kim, Yoon-Hyuk
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.1-6
    • /
    • 2009
  • Recently, importance of the rehabilitation of hand pathologies as well as the development of high-technology hand robot has been increased. The biomechanical model of hand is indispensable due to the difficulty of direct measurement of muscle forces and joint forces in hands. In this study, a three-dimensional biomechanical model of four fingers including three joints and ten muscles in each finger was developed and a mathematical relationship between neural commands and finger forces which represents the enslaving effect and the force deficit effect was proposed. When pressing a plate under the flexed posture, the muscle forces and the joint forces were predicted by the optimization technique. The results showed that the major activated muscles were flexion muscles (flexor digitorum profundus, radial interosseous, and ulnar interosseous). In addition, it was found that the antagonistic muscles were also activated rather than the previous models, which is more realistic phenomenon. The present model has considered the interaction among fingers, thus can be more powerful while developing a robot hand that can totally control the multiple fingers like human.

Biomechanical Comparison of Spinal Fusion Methods Using Interspinous Process Compressor and Pedicle Screw Fixation System Based on Finite Element Method

  • Choi, Jisoo;Kim, Sohee;Shin, Dong-Ah
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.2
    • /
    • pp.91-97
    • /
    • 2016
  • Objective : To investigate the biomechanical effects of a newly proposed Interspinous Process Compressor (IPC) and compare with pedicle screw fixation at surgical and adjacent levels of lumbar spine. Methods : A three dimensional finite element model of intact lumbar spine was constructed and two spinal fusion models using pedicle screw fixation system and a new type of interspinous devices, IPC, were developed. The biomechanical effects such as range of motion (ROM) and facet contact force were analyzed at surgical level (L3/4) and adjacent levels (L2/3, L4/5). In addition, the stress in adjacent intervertebral discs (D2, D4) was investigated. Results : The entire results show biomechanical parameters such as ROM, facet contact force, and stress in adjacent intervertebral discs were similar between PLIF and IPC models in all motions based on the assumption that the implants were perfectly fused with the spine. Conclusion : The newly proposed fusion device, IPC, had similar fusion effect at surgical level, and biomechanical effects at adjacent levels were also similar with those of pedicle screw fixation system. However, for clinical applications, real fusion effect between spinous process and hooks, duration of fusion, and influence on spinous process need to be investigated through clinical study.

Biomechanical Analysis of the Implanted Constrained and Unconstrained ICR Types of Artificial Disc using FE Model (순간중심 고정식 및 이동식 인공디스크 적용에 대한 유한요소 모델을 이용한 생체역학적 분석)

  • Yun Sang-Seok;Jung Sang-Ki;Kim Young-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.176-182
    • /
    • 2006
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain, biomechanical changes with its implantation were rarely studied. To evaluate the effect of artificial disc implantation on the biomechanics of functional spinal unit, a nonlinear three-dimensional finite element model of L4-L5 was developed with 1-mm CT scan data. Biomechanical analysis was performed for two different types of artificial disc having constrained and unconstrained instant center of rotation(ICR), ProDisc and SB Charite III model. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, forces on the spinal ligaments and facet joint, and stress distribution of vertebral endplate for flexion-extension, lateral bending, and axial rotation with a compressive preload of 400N were compared. The implanted model showed increased flexion-extension range of motion compared to that of intact model. Under 6Nm moment, the range of motion were 140%, 170% and 200% of intact in SB Charite III model and 133%, 137%, and 138% in ProDisc model. The increased stress distribution on vertebral endplate for implanted cases could be able to explain the heterotopic ossification around vertebral body in clinical observation. As a result of this study, it is obvious that implanted segment with artificial disc suffers from increased motion and stress that can result in accelerated degenerated change of surrounding structure. Unconstrained ICR model showed increased in motion but less stress in the implanted segment than constrained model.

A Study on the Stress and Strain Analysis of Human Muscle Skeletal Model in Kendo Three Typical Attack Motions (세 가지 주요 검도 공격 동작에서의 근-골격계 응력과 번형률 해석에 관한 연구)

  • Lee, Jung-Hyun;Lee, Young-Shin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.126-134
    • /
    • 2008
  • Kendo is one of the popular sports in modem life. Head, wrist and thrust attack are the fast skill to get a score on a match. Human muscle skeletal model was developed for biomechanical study. The human model was consists with 19 bone-skeleton and 122 muscles. Muscle number of upper limb, trunk and lower limb part are 28, 60, 34 respectively. Bone was modeled with 3D beam element and muscle was modeled with spar element. For upper limb muscle modelling, rectus abdominis, trapezius, deltoideus, biceps brachii, triceps brachii muscle and other main muscles were considered. Lower limb muscle was modeled with gastrocenemius, gluteus maximus, gluteus medius and related muscles. The biomechanical stress and strain analysis of human muscle was conducted by proposed human bone-muscle finite element analysis model under head, wrist and thrust attack for kendo training.

Biomechanical model of pushing and pulling

  • Lee, K.S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.3-9
    • /
    • 1982
  • This study demonstrates that certain personal and task factors can be modelled to predict slip potential as well as back loadings durings dynamic pushing and pulling tasks. Such tasks are com- mon to many manual material handling jobs in industry and the results of this work will hopefully be of use in improved job design. The objective of this research is to formulate and validate a dynamic biomechanical model of pushing and pulling a cart. For pushing and pulling tasks, the model can : (1) estimate foot forces for given hand forces, and (2) estimate tors muscle and vertabral column loadings. In order to formulate and validate the model, experiments involving pushing and pulling of a cart were performed. These experiments produced data of the following type : (1) dynamic forces on the feet, (2) hand forces required to move the cart, (3) body motions as functions of various cart motion and (4) back muscle actions. The model was validated using three different methods; precision was tested using correlation between predicted and measured results, accuracy using standard error between of predicted and measured results, and intuitive comparison of predicted results using sensitivity analyses.

  • PDF

Comparison of Biomechanical Stress on Low Back(L5/S1) for One-hand Lifting and Lowering Activity (한 손 들기 작업과 내리기 작업의 요추부위(L5/S1) 부하에 대한 비교 연구)

  • Kim, Hong-Ki
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.72-81
    • /
    • 2014
  • Even though two-hands lifting/lowering activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting/lowering are also very common at the industrial site, forestry, farming, and daily life. The objective of this study was to compare one-hand lowering activity to lifting activity in terms of biomechanical stress for the range of lowering heights from knuckle height to 10cm above floor level with two workload 7.5kg and 15.0kg. Eight male subjects with LMM were asked to perform lifting/lowering tasks using both a one-handed (left-hand and right-hand) as well as a two-handed technique. Spinal loading was estimated through an EMG-assisted free-dynamic biomechanical model. The biomechanical stress of one-hand lowering activity was shown to be 43% lower than that of one-hand lifting activity. It was claimed that the biomechanical stress for one-hand lifting/lowering activity is almost twice (194%) of the one for two-hands lifting/lowering activity. It was also found that biomechanical stress by one-hand lowering/lifting activity with the half workload of two-hands lowering/lifting activity was greater than that of the two-hands lowering/lifting activity. Therefore, it might be a risk to consider the RWL of one-hand lowering/lifting activity to simply be a half of the RWL of two-hands lowering/lifting activity recommended by NIOSH.

Comparison of Biomechanical Stress on Low Back(L5/S1) for One-hand and Two-hands Lowering Activity

  • Kim, Hong-Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.413-420
    • /
    • 2013
  • Objective: The objective of this study was to compare one-hand and two-hands lowering activity in terms of biomechanical stress for the range of lowering heights from knuckle height to 10cm above floor level. Background: Even though two-hands lifting/lowering activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting/lowering are also very common at the industrial site and forestry and farming. Method: Eight male subjects were asked to perform lowering tasks using both a one-handed as well as a two-handed lowering technique. Trunk muscle electromyographic activity was recorded while the subjects performed the lowering tasks. This information was used as input to an EMG-assisted free-dynamic biomechanical model that predicted spinal loading in three dimensions. Results: It was shown that for the left-hand lowering tasks, the values of moment, lateral shear force, A-P shear force, and compressive force were increased by the average 6%, as the workload was increased twice from 7.5kg to 15kg. For the right-hand lowering task, these were increased by the average 17%. For the two-hands lowering tasks, these were increased by the average 14%. Conclusion: Even though the effect of workload on the biomechanical stress for both one-hand and two-hands lowering tasks is not so significant for the workload less than 15kg, it can be claimed that the biomechanical stress for one-hand lowering is greater than for two-hands lowering tasks. Therefore, it can be concluded that asymmetrical lowering posture would give greater influence on the biomechanical stress than the workload effect for one-hand lowering activity. Application: The result of this study may be used to provide guidelines of recommended safe weights for tasks involved in one-hand lowering activity.

Development of a nonlinear biomechanical soft tissue model for a virtual surgery trainer (가상수술기를 위한 비선형 생체 모델의 개발)

  • Kim J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.911-914
    • /
    • 2005
  • Soft tissue characterization and modeling based on living tissues has been investigated in order to provide a more realistic behavior in a virtual reality based surgical simulation. In this paper, we characterize the nonlinear viscoelastic properties of intra-abdominal organs using the data from in vivo animal experiments and inverse FE parameter estimation algorithm. In the assumptions of quasi-linear-viscoelastic theory, we estimated the nonlinear material parameters to provide a physically based simulation of tissue deformations. To calibrate the parameters to the experimental results, we developed a three dimensional FE model to simulate the forces at the indenter and an optimization program that updates new parameters and runs the simulation iteratively. The comparison between simulation and experimental behavior of pig intra abdominal soft tissue are presented to provide a validness of the tissue model using our approach.

  • PDF

Development on Human Muscle Skeletal Model and Stress Analysis of Kumdo Head Hitting Motion (검도 머리치기 동작의 인체 근골격 모델개발 및 응력해석)

  • Lee, Jung-Hyun;Lee, Se-Hoon;Lee, Young-Shin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.116-125
    • /
    • 2007
  • Human muscle skeletal model was developed for biomechanical study. The human model was consists with 19 bone-skeleton and 122 muscles. Muscle number of upper limb, trunk and lower limb part are 28, 60, 34 respectively. Bone was modeled with 3D beam element and muscle was modeled with spar element. For upper limb muscle modelling, rectus abdominis, trapezius, deltoideus, biceps brachii, triceps brachii muscle and other main muscles were considered. Lower limb muscle was modeled with gastrocenemius, gluteus maximus, gluteus medius and related muscles. The biomechanical stress and strain analysis of human was conducted by proposed finite element analysis model under Kumdo head hitting motion. In this study structural analysis has been performed in order to investigate the human body impact by Kumdo head hitting motion. As the results, the analytical displacement, stress and strain of human body are presented.