• Title/Summary/Keyword: Biomechanical analysis

Search Result 478, Processing Time 0.027 seconds

Influence of Different Slope Analysis during Pitching Wedge Swing on Plantar Pressure Distribution Pattern (경사면에서 골프스윙 동작시 족저압력 분석)

  • Son, Dong-Ju;Yang, Jeong-Ok;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.297-309
    • /
    • 2009
  • The study analyzed the mechanism of plantar foot pressure distribution during pitching wedge swinging on a flat, an up hill lie and a down hill lie to provide the fundamental information regarding biomechanical motion data by using plantar foot pressure measuring instrument. In the results, time factor spanning according to slope differences, plantar foot pressure factor and swing motion on the slope could have negative effect on the coiling of lower limbs during back swing, as well as the blocking of the lower limbs to minimize the dispersion of the weight and the release of the lower limbs after the impact during the down swing process. Moreover, since slope is one of many external factors affecting swing motion, address motion on an up hill lie limits the lower limbs movement, therefore, a relatively narrow stance is better on a down hill lie. It is estimated that a relatively wide stance would be better in order to limit the bigger activation of the lower limbs. Not only for the address motion but also during the down swing on an up hill lie it is concluded that the weight should be on the left foot in order to keep the body balance.

Kinematical Analysis of Angle and Angular Velocity of the Body Segment on Spike in Volleyball (배구 스파이크시 신체분절의 각도와 각속도에 대한 운동학적 분석)

  • Cho, Phil-Hwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.191-199
    • /
    • 2007
  • This study was conducted to examine the biomechanical characteristics of open spike in the volleyball to improve the technique of the volleyball spike. The subjects were six male college and high school athletes. The motions of volleyball spike were filmed by using two Sony VX 2000 Video Cameras. The mechanical factors were angle and angular velocity of body segments in the upper and the lower limbs. The conclusions were as follows; 1. The angle of the shoulder joint of the skilled showed larger than that of the unskilled in impacting of the volley ball spike. 2. The angle of the elbow joint of the skilled showed larger than that of the unskilled in impacting of the volley ball spike. 3. The angle of the wrist joint of the skilled showed smaller than that of the unskilled in impacting of the volley ball spike. 4. The angle of the hip joint of skilled showed larger than that of unskilled in impacting of the volley ball spike. 5. The angle of the knee joint of the skilled and the unskilled showed same in take off and impacting of the volley ball spike, and that of the skilled showed smaller than that of the unskilled in take-off touchdown and touchdown after impact of the volley ball spike. 6. The angle of the ankle joint of skilled showed larger than unskilled in take-off of the volley ball spike. 7. The angular velocity of the shoulder joint, elbow joint, wrist joint of the skilled showed faster than that of the unskilled in impacting of the volley ball spike. Taken together the result of them, I have come to conclusion that knee joint angle in touchdown of the take off should be decreased and knee joint angle in take off should be increased, and then stability of the take off should be made and, and that extension of the elbow joint should be made and wrist joint angle decreased and shoulder and hip joint angle increased, and then C.O.G of the arm and hand should be positioned ahead C.O.G of the body in impacting for effective impact of the spike, and that the transfer of the angular velocity of body segments for effective impact of the spike make from the proximal segment to the distal segment at spike in volleyball.

The effects of different pilot-drilling methods on the mechanical stability of a mini-implant system at placement and removal: a preliminary study (인조골에서 식립 방법이 교정용 미니 임플란트의 기계적 안정성에 미치는 영향에 대한 예비연구)

  • Cho, Il-Sik;Choo, Hye-Ran;Kim, Seong-Kyun;Shin, Yun-Seob;Kim, Duck-Su;Kim, Seong-Hun;Chung, Kyu-Rhim;Huang, John C.
    • The korean journal of orthodontics
    • /
    • v.41 no.5
    • /
    • pp.354-360
    • /
    • 2011
  • Objective: To investigate the effects of different pilot-drilling methods on the biomechanical stability of self-tapping mini-implant systems at the time of placement in and removal from artificial bone blocks. Methods: Two types of artificial bone blocks (2-mm and 4-mm, 102-pounds per cubic foot [102-PCF] polyurethane foam layered over 100-mm, 40-PCF polyurethane foam) were custom-fabricated. Eight mini-implants were placed using the conventional motor-driven pilot-drilling method and another 8 mini-implants were placed using a novel manual pilot-drilling method (using a manual drill) within each of the 2-mm and 4-mm layered blocks. The maximum torque values at insertion and removal of the mini-implants were measured, and the total energy was calculated. The data were statistically analyzed using linear regression analysis. Results: The maximum insertion torque was similar regardless of block thickness or pilot-drilling method. Regardless of the pilot-drilling method, the maximum removal torque for the 4-mm block was statistically higher than that for the 2-mm block. For a given block, the total energy at both insertion and removal of the mini-implant for the manual pilot-drilling method were statistically higher than those for the motor-driven pilot-drilling method. Further, the total energies at removal for the 2-mm block was higher than that for the 4-mm block, but the energies at insertion were not influenced by the type of bone blocks. Conclusions: During the insertion and removal of mini-implants in artificial bone blocks, the effect of the manual pilot-drilling method on energy usage was similar to that of the conventional, motor-driven pilot-drilling method.

Kinetic analysis of the lower limb in visual handicap children (시각장애 아동의 보행 시 하지의 운동역학적 분석)

  • Yi, Jae-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.3952-3958
    • /
    • 2011
  • This study was to investigate the difference in gait pattern between the visual handicap children and non handicap children in by analyze the biomechanical variation and pattern of lower limb. Therefore, we have made a choice of four visually handicapped children and two subjects, who had no medical disorder for the last six months. In order to collect the gait pattern data of each group, we have used six infrared cameras and one forceplate Also, we have used QTM program to collect the raw data and Visual3D program to calculate kinetic variable. The results were as follows, An/Posterior GRF of breaking phase and propulsion phase in stance phase was lower in visual handicapped children than that of non handicapped children and breaking phase was longer than propulsion phase. extension moment at the ankle was quite lower than general gait pattern and there was little variation at the knee joint which makes the results differ from the general gait pattern. However, hip joint moment was relatively higher than that of other joints. Mechanical variation of lower limb, in case of foot and shank, showed similar results. but generated very low mechanical energy. In thigh, the form of mechanical energy generation was slightly different in each group but generated more mechanical energy than other segments.

Comparison of removal torque of dual-acid etched and single-acid etched implants in rabbit tibias (단일, 이중 산처리 임플란트의 회전제거력 비교)

  • Kim, Jong-Jin;Cho, Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.335-341
    • /
    • 2019
  • Purpose: Chemically strong-acids (HF and $HCl/H_2SO_4$) dual etching implant surfaces have higher strengths of osseointegration than machined implant surfaces. However, the dual acid treatment deteriorates the physical properties of the titanium by weakening the fatigue resistance of the implant and causing microcracks. The removal torque comparison between the dual-acid etched (hydrochloric acid, sulfuric acid, HS) and single-acid etched implants (hydrochloric acid, H) could reveal the efficiency of implant surface acid treatment. Materials and methods: Nine $3.75{\times}4mm$ dual-acid etched SLA implants and nine single-acid etched SLA implants were inserted into New Zealand rabbit tibias. After 10 days, removal torque, roughness, and wetting angle were measured. Results: Mean removal torque values were as follows: Mean removal torque were 9.94 Ncm for HS group and 9.96 Ncm for H group (P=.995). Mean surface roughness value were $0.93{\mu}m$ for HS group and $0.84{\mu}m$ for H group (P=.170). Root mean square roughness (RSq) values were $1.21{\mu}m$ for HS group and $1.08{\mu}m$ for H group (P=.294), and mean wetting angle values were $99^{\circ}$ for HS group and $98^{\circ}$ for H group (P=.829). Statistical analysis showed no significant difference between the removal torques, roughness, or wetting angles of the two groups. Conclusion: In this experiment, we found no significant difference in removal torque, roughness, or wetting angle between dual-acid etched and single-acid etched implants.

A Biomechanics-Based Ergonomic Analysis for Footware Development (풋웨어 개발을 위한 생체역학 기반 인간공학적 분석 : B-boy 신발 개발을 중심으로)

  • Hah, Chong-Ku;Jang, Young-Kwan;Kim, Jin-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.140-147
    • /
    • 2019
  • The purpose of this study is to find biomechanical parameters for optimal shoes production through an ergonomic usability assessment of five existing types of shoes preferred by B-BOY. Ten experts and ten non-experts participated in the experiment, and 12 infrared cameras (Qualis, Oqus), force plate (Kistler, 9286AA) and foot pressure plate (Zebris Gmbh, Zebris PDM-System) were used to obtain the data. The results of the study are as follows. First, P shoes with a friction coefficient of 0.38 and a free moment of 0.32 N/m/kg are desirable in terms of traction capability and safety. Second, on the cushion, it was found that the N shoes 2.51 N, sec/kg and non-expert, and 2.86 N and sec/kg were suitable. Third, it is deemed appropriate for C shoes with a forefoot average pressure of 10.11 KPa (right), 10.05 KPa (left), and V shoes with a rearfoot average pressure of 8.4 KPa (right) and 8.36 KPa (left). In conclusion, the combination of the structure and material of V shoes should be developed for traction and stability, N shoes for cushion, and walking balance for C and V shoes.

On the osseointegration of zirconia and titanium implants installed at defect site filled with xenograft material (이종골 이식을 동반한 지르코니아와 타이타늄 임플란트의 골유착에 관한 연구)

  • Kim, Sung-Won;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • Purpose: The purpose of this study was to compare zirconia implants with titanium implants from the view point of biomechanical stability and histologic response on osseointegration when those were placed with xenograft materials. Materials and methods: Specimens were divided into two groups; the control group was experimented with eighteen titanium implants which had anodized surface and the experimental group was experimented with eighteen sandblasted zirconia (Y-TZP) implants. At the tibias of six pigs, implants were installed into bone defect sites prepared surgically and treated with resorbable membranes and bovine bone. Two pigs were sacrificed after 1, 4 and 12 weeks respectively. Each implant site was sampled and processed for histologic and histomorphometric analysis. The stability of implants was evaluated with a $Periotest^{(R)}$. And the interfaces between bone and the implant were observed with a scanning electron microscope. Results: In stability analysis there was no significant difference between Periotest values of the control group and the experimental group. In histologic analysis with a light microscope after 4 weeks, there was new bone formation with the resorption of bovine bone and the active synthesis of osteoblasts in both groups. In bone-implant contact percentage there was significant difference between both groups (P<.05). In bone area percentage there was no significant difference between both groups. In analysis of both groups with a scanning electron microscope there was a gap between bone and a surface at 4 weeks and it was filled up with bone formed newly at 12 weeks. Conclusion: When accompanied by xenograft using membrane, bone to implant contact percentage of zirconia implants used in this experiment was significantly less than that of the titanium implants by surface treatment of anodic oxidation. So, it is considered that the improvement of zirconia implant is needed through ongoing research on surface treatment methods for its practical use.

Biomechanical Comparative Analysis of Two Goal-kick Motion in Soccer (두 가지 축구 골킥 동작의 운동역학적 비교 분석)

  • Jin, Young-Wan;Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.29-44
    • /
    • 2005
  • The purpose of this study is to reveal the effects of two different kicks, the drop kick and the punt kick, into the kicking motion, through the kinetic comparative analysis of the kicking motion, which is conducted when one kicks a soccer goal. To grasp kinetic changing factors, which is performed by individual's each body segment, I connected kicking motions, which were analyzed by a two dimension co-ordination, into the personal computer to concrete the digits of it and smoothed by 10Hz. Using the smoothed data, I found a needed kinematical data by inputting an analytical program into the computer. The result of comparative analysis of two kicking motions can be summarized as below. 1. There was not a big difference between the time of the loading phase and the time of the swing phase, which can affect the exact impact and the angle of balls aviation direction. 2. The two kicks were not affected the timing and the velocity of the kicking leg's segment. 3. In the goal kick motion, the maximum velocity timing of the kicking leg's lower segment showed the following orders: the thigh(-0.06sec), the lower leg(-0.05sec), the foot(-0.018sec) in the drop kick, and the thigh(-0.06sec), the lower leg(-0.05sec), the foot(-0.015sec) in the punt kick. It showed that whipping motion increases the velocity of the foot at the time of impact. 4. At the time of impact, there was not a significant difference in the supporting leg's knee and ankle. When one does the punt kick, the subject spreads out his hip joint more at the time of impact. 5. When the impact performed, kicking leg's every segment was similar. Because the height of the ball is higher in the punt kick than in the drop kick, the subject has to stretch the knees more when he kicks a ball, so there is a significant affect on the angle and the distance of the ball's flying. 6. When one performs the drop kick, the stride is 0.02m shorter than the punt kick, and the ratio of height of the drop kick is 0.05 smaller than the punt kick. This difference greatly affects the center of the ball, the supporting leg's location, and the location of the center of gravity with the center of the ball at the time of impact. 7. Right before the moment of the impact, the center of gravity was located from the center of the ball, the height of the drop kick was 0.67m ratio of height was 0.37, and the height of the punt kick was 0.65m ratio of height was 0.36. The drop kick was located more to the back 0.21m ratio of height was 0.12, the punt kick was located more to the back 0.28m ratio of height was 0.16. 8. There was not a significant difference in the absolute angle of incidence and the maximum distance, but the absolute velocity of incidence showed a significant difference. This difference is caused from that whether players have the time to perform of not; the drop kick is used when the players have time to perform, and punt kick is used when the players launch a shifting attack. 9. The surface reaction force of the supporting leg had some relation with the approaching angle. Vertical reaction force (Fz) showed some differences in the two movements(p<0.05). The maximum force of the right and left surface reaction force (Fx) didn't have much differences (p<0.05), but it showed the tendency that the maximum force occurs before the peak force of the front and back surface (Fy) occurs.

Stress dissipation characteristics of four implant thread designs evaluated by 3D finite element modeling (4종 임플란트 나사산 디자인의 응력분산 특성에 대한 3차원 유한요소해석 연구)

  • Nam, Ok-Hyun;Yu, Won-Jae;Kyung, Hee-Moon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • Purpose: The aim was to investigate the effect of implant thread designs on the stress dissipation of the implant. Materials and methods: The threads evaluated in this study included the V-shaped, buttress, reverse buttress, and square-shaped threads, which were of the same size (depth). Building four different implant/bone complexes each consisting of an implant with one of the 4 different threads on its cylindrical body ($4.1mm{\times}10mm$), a force of 100 N was applied onto the top of implant abutment at $30^{\circ}$ with the implant axis. In order to simulate different osseointegration stages at the implant/bone interfaces, a nonlinear contact condition was used to simulate immature osseointegration and a bonding condition for mature osseointegration states. Results: Stress distribution pattern around the implant differed depending on the osseointegration states. Stress levels as well as the differences in the stress between the analysis models (with different threads) were higher in the case of the immature osseointegration state. Both the stress levels and the differences between analysis models became lower at the completely osseointegrated state. Stress dissipation characteristics of the V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration. These results indicated that implant thread design may have biomechanical impact on the implant bed bone until the osseointegration process has been finished. Conclusion: The stress dissipation characteristics of V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration.

Biomechanical and Physiological Comparative Analysis of the Single-Radius Knee Arthroplasty Systems and Multi-Radius Knee Arthroplasty Systems (무릎인공관절 단축범위(Single-Radius) 수술자와 다축범위(Multi-Radius) 수술자의 운동역 학적 및 운동생리학적 비교분석)

  • Jin, Young-Wan;Kwak, Yi-Sub
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1532-1537
    • /
    • 2008
  • The purpose of this study was to investigate the effect of different arthroplasty designs on knee kinematic and lower limb muscular activation for up-stair and down-stair movement. 3-D video analysis of whole body and joint kinematics and EMG analysis of quadriceps and hamstrings were conducted. One-way ANOVAs were used for statistical analyses (p=0.05). The single-radius group exhibited more arthroplasty limb quadriceps EMG and hamstring coactivation EMG than the multi-radius group. Single-radius demonstrated more abduction angular displacement and reached peak abduction earlier than the multi-radius arthroplasty limb. The single- radius the percent body fat showed similar values in the Elderly, Single and Multi-radius group among the periods, however Control group was Lowered among the periods. Single-radius group limb also increased the quadriceps muscle activation level to produce more knee extension moment to compensate for the short quadriceps moment arm. Resting metabolic rate was significantly increased in control group in the period of LI. Energy expenditure was extremely increased in all groups except control group among the periods. We can say this is the exercise effects.