• 제목/요약/키워드: Biomechanical analysis

검색결과 474건 처리시간 0.025초

Biomechanical analysis of distalization of mandibular molars by placing a mini-plate: A finite element study

  • Park, Myungsoon;Na, Yonghyun;Park, Minbong;Ahn, Janghoon
    • 대한치과교정학회지
    • /
    • 제47권5호
    • /
    • pp.289-297
    • /
    • 2017
  • Objective: The objective of this study was to analyze the patterns of tooth movements when distalization of mandibular molars using a mini-plate took place. A finite element analysis was applied to analyze patterns of tooth movements. Methods: The model of the mandible and teeth were used to build a finite element analysis model, and a mini-plate was inserted in the mandibular ramus. Two different orthodontic forces were established for displacement of mandibular molars. Orthodontic forces were applied at the level of the bracket and at the level of the cemento-enamel junction in the mandibular canine respectively. Results: Applying orthodontic forces at the level of the cemento-enamel junction resulted in a greater biomechanical bodily movement in distalization of the mandibular molars compared to when the orthodontic forces were applied at the level of the bracket. Applying orthodontic forces to the cemento-enamel junction also resulted in unwanted greater extrusive movements in distalization of the mandibular molars compared to the bracket level. Conclusions: With considering the mode of orthodontic teeth movement, applying different vertical orthodontic forces for distalization of mandibular molars can lead to more effective distalization of teeth.

Three-dimensional finite element analysis of implant-supported crown in fibula bone model

  • Park, Young-Seok;Kwon, Ho-Beom
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권3호
    • /
    • pp.326-332
    • /
    • 2013
  • PURPOSE. The purpose of this study was to compare stress distributions of implant-supported crown placed in fibula bone model with those in intact mandible model using three-dimensional finite element analysis. MATERIALS AND METHODS. Two three-dimensional finite element models were created to analyze biomechanical behaviors of implant-supported crowns placed in intact mandible and fibula model. The finite element models were generated from patient's computed tomography data. The model for grafted fibula was composed of fibula block, dental implant system, and implant-supported crown. In the mandible model, same components with identical geometries with the fibula model were used except that the mandible replaced the fibula. Vertical and oblique loadings were applied on the crowns. The highest von Mises stresses were investigated and stress distributions of the two models were analyzed. RESULTS. Overall stress distributions in the two models were similar. The highest von Mises stress values were higher in the mandible model than in the fibula model. In the individual prosthodontic components there was no prominent difference between models. The stress concentrations occurred in cortical bones in both models and the effect of bicortical anchorage could be found in the fibula model. CONCLUSION. Using finite element analysis it was shown that the implant-supported crown placed in free fibula graft might function successfully in terms of biomechanical behavior.

근골격계 모델을 이용한 요추전만 각도 변화가 요추 관절에 미치는 영향 분석 (Analysis on the Effect of Lordosis Changes at Lumbar Joint using 3-dimensional Musculoskeletal Model)

  • 배태수;김신기;류제청;문무성
    • 한국정밀공학회지
    • /
    • 제26권10호
    • /
    • pp.116-121
    • /
    • 2009
  • It is important to consider lumbar lordotic angle for setup of training program in field of sports and rehabilitaton to prevent unexpected posture deviation and back pain. The purpose of this study was to analyze the biomechanical impact of the level of lumbar lordosis angle during isokinetic exercise through dynamic analysis using a 3-dimensional musculoskeletal model. We made each models for normal lordosis, excessive lordosis, lumbar kyphosis, and hypo-lordosis according to lordotic angle and inputted experimental data as initial values to perform inverse dynamic analysis. Comparing the joint torques, the largest torque of excessive lordosis was 16.6% larger and lumbar kyphosis was 11.7% less than normal lordosis. There existed no significant difference in the compressive intervertebral forces of each lumbar joint (p>0.05), but statistically significant difference in the anterioposterior shear force (p<0.05). For system energy lumbar kyphosis required the least and most energy during flexion and extension respectively. Therefore during the rehabilitation process, more efficient training will be possible by taking into consideration not simply weight and height but biomechanical effects on the skeletal muscle system according to lumbar lordosis angles.

드롭랜딩 시 심박수 증가에 따른 하지의 생체역학적 차이 분석 (Analysis on Biomechanical Differences in Lower Limbs Caused by Increasing Heart Rates During Drop-landing)

  • 홍완기;김도은
    • 한국운동역학회지
    • /
    • 제25권2호
    • /
    • pp.141-147
    • /
    • 2015
  • Objective : This study aimed to understand how increased heart rates at the time of drop landing during a step test would affect biomechanical variables of the lower extremity limbs. Background : Ballet performers do more than 200 landings in a daily training. This training raises the heart rate and the fatigability of the lower extremity limbs. Ballet performance high heart rate can trigger lower extremity limb injury. Method : We instructed eight female ballet dancers with no instability in their ankle joints(mean ${\pm}$ SD: age, $20.7{\pm}0.7yr$; body mass index, $19.5{\pm}1.2kg/m^2$, career duration, $8.7{\pm}2.0yr$) to perform the drop landing under the following conditions: rest, 60% heart rate reserve (HRR) and 80% HRR. Results : First, the study confirmed that the increased heart rates of the female ballet dancers did not affect the working ranges of the knee joints during drop landing but only increased angular speeds, which was considered a negative shock-absorption strategy. Second, 80% HRR, which was increased through the step tests, led to severe fatigue among the female ballet dancers, which made them unable to perform a lower extremity limb-neutral position. Hence, their drop landing was unstable, with increased introversion and extroversion moments. Third, we observed that the increasing 80% HRR failed to help the dancers effectively control ground reaction forces but improved the muscular activities of the rectus femoris and vastus medialis oblique muscles. Fourth, the increasing heart rates were positively related to the muscular activities of the vastus medialis oblique and rectus femoris muscles, and the extroversion and introversion moments. Conclusion/Application : Our results prove that increased HRR during a step test negatively affects the biomechanical variables of the lower extremity limbs at the time of drop landing.

남자 해머던지기 시 각 회전 별 역학적 특성과 투사 요인 분석 (Analysis of Projectile Factors and Biomechanical Characteristics of Men's Hammer Throwing during Turning Phases)

  • 김태삼;류지선;이미숙;윤석훈;박재명
    • 한국운동역학회지
    • /
    • 제21권2호
    • /
    • pp.141-152
    • /
    • 2011
  • The purpose of this study was to investigate the projectile factors and biomechanical characteristics of men's hammer throwing during turning phases. Four national leveled athletes including Korea national record holder participated in this study. After full warm-up, each participant performed 6 trials of hammer throwing with their best. The best recorded trial was selected from each participant and they were analyzed for this study. Three-Dimensional motion analysis using a system of 5 video cameras at a sampling frequency 60Hz was performed for this study. As the number of turns increased, athletes revealed following characteristics. 1) The single and double support time decreased. 2) The rotation foot was closed to axis foot and it revealed greater medio-lateral displacement than that of horizontal one. 3) At the transition point from double support to single support, ball was in front of rotation foot so that not much angular velocity obtained. For the projectile factors, projectile angle did not show differences while projectile height and velocity revealed differences among the participants. It may indicated that each athlete has different fitness and skill level to resist centrifugal force which become larger as the number of turn increased.

Biomechanical Effectiveness of the Low-Dye Taping on Peak Plantar Pressure During Treadmill Walking Exercise in Subjects With Flexible Flatfoot

  • Lim, One-Bin;Kim, Jeong-Ah;Kwon, Oh-Yun;Yi, Chung-Hwi
    • 한국전문물리치료학회지
    • /
    • 제22권2호
    • /
    • pp.41-51
    • /
    • 2015
  • The purposes of this study were 1) to determine the effects of low-dye taping on peak plantar pressure following treadmill walking exercise, 2) to determine whether the biomechanical effectiveness of low-dye taping in peak plantar pressure was still maintained following removal of the tape during treadmill walking, and 3) to determine the trend towards a medial-to-lateral shift in peak plantar pressure in the midfoot region before and after application of low-dye taping. Twenty subjects with flexible flatfoot were recruited using a navicular drop test. The peak plantar pressure data were recorded during five treadmill walking sessions: (1) un-taped, (2) baseline-taped, (3) after a 10-minute treadmill walking exercise, (4) after a 20-minute treadmill walking exercise, and (5) after removal of the taping. The foot was divided into six parts during the data analysis. One-way repeated measures analysis of variance was performed to investigate peak plantar pressure variations in the six foot parts in the five sessions. This study resulted in significantly increased medial forefoot peak plantar pressure compared to the un-taped condition (p=.017, post 10-minute treadmill walking exercise) and (p=.021, post 20-minute treadmill walking exercise). The peak plantar pressure in the lateral forefoot showed that there was a significant decrease after sessions of baseline-taped (p=.006) and 10-minute of treadmill walking exercise (p=.46) compared to the un-taped condition. The tape removal values were similar to the un-taped values in the five sessions. Thus, the findings of the current study may be helpful when researchers and clinicians estimate single taping effects or consider how frequently taping should be replaced for therapeutic purposes. Further studies are required to investigate the evidence in support of biomechanical effectiveness of low-dye taping in the midfoot region.

순간중심 고정식 및 이동식 인공디스크 적용에 대한 유한요소 모델을 이용한 생체역학적 분석 (Biomechanical Analysis of the Implanted Constrained and Unconstrained ICR Types of Artificial Disc using FE Model)

  • 윤상석;정상기;김영은
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.176-182
    • /
    • 2006
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain, biomechanical changes with its implantation were rarely studied. To evaluate the effect of artificial disc implantation on the biomechanics of functional spinal unit, a nonlinear three-dimensional finite element model of L4-L5 was developed with 1-mm CT scan data. Biomechanical analysis was performed for two different types of artificial disc having constrained and unconstrained instant center of rotation(ICR), ProDisc and SB Charite III model. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, forces on the spinal ligaments and facet joint, and stress distribution of vertebral endplate for flexion-extension, lateral bending, and axial rotation with a compressive preload of 400N were compared. The implanted model showed increased flexion-extension range of motion compared to that of intact model. Under 6Nm moment, the range of motion were 140%, 170% and 200% of intact in SB Charite III model and 133%, 137%, and 138% in ProDisc model. The increased stress distribution on vertebral endplate for implanted cases could be able to explain the heterotopic ossification around vertebral body in clinical observation. As a result of this study, it is obvious that implanted segment with artificial disc suffers from increased motion and stress that can result in accelerated degenerated change of surrounding structure. Unconstrained ICR model showed increased in motion but less stress in the implanted segment than constrained model.