• Title/Summary/Keyword: Biomechanical

검색결과 954건 처리시간 0.026초

Biomechanical Properties of the Cranial Dura Mater with Puncture Defects : An In Vitro Study

  • Aydin, Hasan Emre;Kizmazoglu, Ceren;Kaya, Ismail;Husemoglu, Bugra;Sozer, Gulden;Havitcioglu, Hasan;Arslantas, Ali
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권4호
    • /
    • pp.382-388
    • /
    • 2019
  • Objective : The primary aim of this investigation was to explore the nature of dura mater biomechanics following the introduction of puncture defect(s). Methods : Twenty-eight dura mater specimens were collected during autopsy from the department of forensic medicine of the authors' institution. Specimens were divided randomly into one of four groups : group I (cranial dura mater; n=7), group II (cranial dura mater with one puncture defect; n=7); group III (cranial dura mater with two puncture defects; n=7), and group IV (cranial dura mater with three puncture defects; n=7). Results : The mean${\pm}$standard deviation tensile strengths of the dura mater were $8.35{\pm}3.16$, $8.22{\pm}3.32$, $7.13{\pm}1.77$, and $6.94{\pm}1.93MPa$ for groups I, II, III, and IV, respectively. There was no statistical difference between all groups. A single, two or more punctures of the dura mater using a 20-gauge Quincke needle did not affect cranial dura tensile strength. Conclusion : This biomechanical study may contribute to the future development of artificial dura mater substitutes and medical needles that have a lower negative impact on the biomechanical properties of dura mater.

달리기 속도의 변화가 인체 충격 가속도와 생체역학적 변인에 미치는 영향 (Effects of Running Speed on Body Impact Acceleration and Biomechanical Variables)

  • Young-Seong Lee;Jae-Won Kang;Sang-Kyoon Park
    • 한국운동역학회지
    • /
    • 제34권2호
    • /
    • pp.81-92
    • /
    • 2024
  • Objective: The purpose of this study was to analyze the impact acceleration, shock attenuation and biomechanical variables at various running speed. Method: 20 subjects (height: 176.15 ± 0.63 cm, weight: 70.95 ± 9.77 kg, age: 27.00 ± 4.65 yrs.) participated in this study. The subjects ran at four different speeds (2.5 m/s, 3.0 m/s, 3.5 m/s, 4.0 m/s). Three-dimensional accelerometers were attached to the distal tibia, sternum and head. Gait parameters, biomechanical variables (lower extremity joint angle, moment, power and ground reaction force) and acceleration variables (impact acceleration, shock attenuation) were calculated during the stance phase of the running. Repeated measures ANOVA was used with an alpha level of .05. Results: In gait parameters, decreased stance time, increasing stride length and stride frequency with increasing running speed. And at swing time 2.5 m/s and 4.0 m/s was decreased compared to 3.0 m/s and 3.5 m/s. Biomechanical variables statistically increased with increasing running speed except knee joint ROM, maximum ankle dorsiflexion moment, and maximum hip flexion moment. In acceleration variables as the running speed increased (2.5 m/s to 4.0 m/s), the impact acceleration on the distal tibia increased by more than twice, while the sternum and head increased by approximately 1.1 and 1.2 times, respectively. And shock attenuation (tibia to head) increased as the running speed increased. Conclusion: When running speed increases, the magnitude and increasing rate of sternum and head acceleration are lower compared to the proximal tibia, while shock attenuation increases. This suggests that limiting trunk movement and increasing lower limb movement effectively reduce impact from increased shock. However, to fully understand the body's mechanism for reducing shock, further studies are needed with accelerometers attached to more segments to examine their relationship with kinematic variables.

A Comparative Analysis of Biomechanical Factors and Premotor Time of Body Muscles between Elite College and Amateur Baseball Players during the Baseball Batting Motion

  • Lim, Young-Tae;Kwon, Moon-Seok
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.205-211
    • /
    • 2016
  • Purpose: The aim of this study was to analyze biomechanical factors and PMT (premotor time) of body muscles between elite college and amateur baseball players during the baseball batting motion. Method: Kinematic and electromyographic data were obtained for 10 elite college baseball players and 10 amateur baseball players who participated in this study. All motion capture data were collected at 200 Hz using 8 VICON cameras and the PMT of muscles was recorded using a Delsys Trigno wireless system. The peak mean bat speed and the peak mean angular velocities of trunk, pelvis, and bat with PMT of 16 body muscles were computed. These kinematic and PMT data of both groups were compared by independent t-tests (p < .05). Results: The pelvis, trunk, and bat showed a sequence of angular velocity value during baseball batting. The PMTs of right tibialis anterior, left gastrocnemius, external oblique, and erector spinae were significantly different between the two groups. Conclusion: The PMT of body muscles was related to the shifting of body and rotation of the pelvis and the trunk segment, and this action can be considered the coordinated muscle activity of the lower and upper body.

평지를 걸어갈 때 하지운동과 작용하는 하중에 대한 생체역학적 해석 (A Biomechanical Analysis of Lower Extremity Kinematics and Kinetics During Level Walking)

  • 손권;최기영;정민근
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2101-2112
    • /
    • 1994
  • A two-dimensional biomechanical model was developed in order to calculated the lower extremity kinematics and kinetics during level walking. This model consists of three segments : the thigh, calf, and foot. Each segment was assumed to be a rigid body ; its motion to be planar in the sagittal plane. Five young males were involved in the gait experiment and their anthropometric data were measured for the calculation of segmental masses and moments of inertial. Six markers were used to obtain the kinematic data of the right lower extremity for at least three trials of walking at 1.0m/s, and simultaneously a Kistler force plate was used to obtain the foot-floor reaction data. Based on the experimental data acquired for the stance phase of the right foot, calculated vertical joint forces reached up to 0.91, 1.05, and 1.11 BW(body weight) at the hip, the knee, the ankle joints, respectively. The flexion-extension moments reached up to 69.7, 52.3, and 98.8 Nm in magnitude at the corresponding three joints. It was found that the calculated joint loadings of a subject were statistically the same for all his three trials, but not the same for all five subjects involved in the gait study.

요추부 극돌기간 고정기구의 생체역학적 해석 (Biomechanical Analysis of Lumbar Interspinous Process Fixators)

  • 허순;박정홍;이성재;손권
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.195-202
    • /
    • 2006
  • The degenerative lumbar spinal stenosis (DLSS) is a disease inducing low back pain, leg pain, convulsion. numbness, and neurogenic claudication from compression of nerve root. Intervertebra fixation was reported to increase the degeneration of neighbor lesion after treatment. Recently, a new surgical technique of inserting a fixator between interspinous processes has been introduced. The purpose of this study is to design the interspinous process fixator with flexibility to complement the trouble of using fixator in DLSS. This study evaluated the existing fixator through the mechanical test and modified it using the finite element analysis (FEA). The evaluation was based on the displacement, stiffness and von-Mises stress obtained from the mechanical test and calculated from the FEA in the biomechanical loading condition. Effects of variation in length and thickness were investigated to design an optimal fixator. Three prototypes were manufactured using FEA results. Mechanical tests under the biomechanical loading condition were performed to select the best one from these three. The selected fixator increased flexiblity by 32.9%.

발레 Jetė 동작의 도움닫기와 점프구간에서 상해 발생 요인에 대한 생체역학적 분석 (Biomechanical Analysis of Injury Factors in the Run UP and Jump Phases of the Jetѐ)

  • 이진
    • 한국운동역학회지
    • /
    • 제22권3호
    • /
    • pp.295-304
    • /
    • 2012
  • This study, through biomechanical analysis, conducts a risk assessment of injury occurrence in ballet dancers while they perform running and jumping movements. The participants were nine female collegiate students majoring in ballet(age: $20.89{\pm}1.17years$; height: $160.89{\pm}7.01cm$; mass: $48.89{\pm}3.26$). Descriptive data were expressed as $mean{\pm}standard$ deviation(SD) for all variables. An independent t-test was conducted to determine how the following variables differed: duration time, position of the center of gravity, angle of the hip, torque of the hip, and muscle activity. All comparisons were made at the p<0.05 significance level. The results show that the jump time was two times longer than the run time in the duration time. The jump length was also longer than the run. The angle of the hip and the torque at the hip were higher in the right. The vastus medialis muscle was most frequently used. These findings demonstrate that participants' jumps may require more biomechanical variables for performance of better and more correct $jet{\acute{e}}$.

Analysis of tool grip tasks using a glove-based hand posture measurement system

  • Yun, Myung-Hwan;Freivalds, Andris;Lee, Myun-W.
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1994년도 춘계공동학술대회논문집; 창원대학교; 08월 09일 Apr. 1994
    • /
    • pp.596-605
    • /
    • 1994
  • An efficient measurement and evaluation system for hand tool tasks will provide a practical solution to the problem of designing and evaluating manual tool tasks in the workplace. Few studies on the biomechanical analysis of hand postures and tool handling tasks exist because of the lack of appropriate measurement techniques for hand force. A measurement system for the finger forces and joint angles for analysis of manual tool handling tasks was developed in this study. The measurement system consists of a force sensing glove made from twelve Force Sensitive Resistors and an angle-measuring glove (Cyberglove$\^$TM/, Virtual technologies) with eighteen joint angle sensors. A biomechanical model of the hand using the data from the measurement system was also developed. Systems of computerized procedures were implemented integrating the hand posture measurement system, biomechanical analysis system, and the task analysis system for manual tool handling tasks. The measurement system was useful in providing the hand force data needed for an existing task analysis system used in CTD risk evaluation. It is expected that the hand posture measurement developed in this study will provide an, efficient and cost-effective solution to task analysis of manual tool handling tasks. These tasks are becoming increasingly important areas of occupational health and safety of the country.

Analysis on Biomechanical Differences Depending on Changes in Postures during Farm Work

  • Lee, Chulgab;Hong, Wanki
    • 대한인간공학회지
    • /
    • 제35권5호
    • /
    • pp.307-317
    • /
    • 2016
  • Objective: This study looks into biomechanical variables occurring when one moves in a sitting posture, and presents objective references to make improvements in work environments of farm workers. Background: The farmers have more common musculoskeletal disorders compared to other professions, because they are much more exposed to biomechanical risk factors. The sitting posture that is the representative form of the squatted, can cause typical knee joint diseases, such as osteoarthritis or patellofemoral pain syndrome of the knee joint. Therefore, a quantitative study of knee load upon the movement in a squatting posture is required. Method: In order to proceed with its investigation, the study examined movements in a sitting posture with and without a lower body supporter through a threedimensional image analysis and by using Surface EMG. The study compared and analyzed the average muscle activity and the maximum muscle activity as well. Results: Every movement in a sitting posture is related to loads onto the knee joints and, when the farm workers move to sides, the study observed a high level of bowlegged moment. The study also noticed differences in muscle activity of medial gastrocnemius with and without the lower body supporter. Conclusion and Application: The study argues that what has been discussed so far is evidence to prove how the farm working environments should be improved in consideration of these movements observed when the farm workers move in a sitting posture.

동작분석 시스템을 이용한 골프 스윙 분석 기초 알고리즘 개발 (The Development of A Basic Golf Swing Analysis Algorithm using a Motion Analysis System)

  • 서재문;이해동;이성철
    • 한국운동역학회지
    • /
    • 제21권1호
    • /
    • pp.85-95
    • /
    • 2011
  • Three-dimensional(3D) motion analysis is a useful tool for analyzing sports performance. During the last few decades, advances in motion analysis equipment have enabled us to perform more and more complicated biomechanical analyses. Nevertheless, considering the complexity of biomechanical models and the amount of data recorded from the motion analysis system, subsequent processing of these data is required for event-specific motion analysis. The purpose of this study was to develop a basic golf swing analysis algorithm using a state-of-the-art VICON motion analysis system. The algorithm was developed to facilitate golf swing analysis, with special emphasis on 3D motion analysis and high-speed motion capture, which are not easily available from typical video camera systems. Furthermore, the developed algorithm generates golf swing-specific kinematic and kinetic variables that can easily be used by golfers and coaches who do not have advanced biomechanical knowledge. We provide a basic algorithm to convert massive and complicated VICON data to common golf swing-related variables. Future development is necessary for more practical and efficient golf swing analysis.

장애물을 걸어서 넘어갈때 측정한 발반력에 대한 생체역학적 해석 (A Biomechanical Analysis of Foot-Floor Reaction Forces Measured When Walking over an Obstacle)

  • 윤종일;손권;이민철
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1864-1873
    • /
    • 1993
  • A biomechanical approach was carried out to analyze foot-floor reaction forces acting on five male subjects performing a walking task. The task analyzed was walking over an obstacle with the right bare foot. The foot-floor reaction data were measured from a force plate, and then processed using a software developed. The source program was coded in the C language for easier on-line data acquisition and graphic displays. High repeatability was found in the reaction data acquired from three trials by each subject. For obstacle height from 0 to 25 cm, the maximum in reaction force reached up to 1.048 BW in the vertical, 0.174 BW in the anterior-posterior, and 0.054 BW in the medio-lateral components, respectively. A quantity was defined by the difference between two vertical reaction values, and this quantity was found to be proportional to the obstacle height. It was also shown that the whole body motion could be predicted the measured foot-floor reaction data.