• Title/Summary/Keyword: Biomass gasification

Search Result 106, Processing Time 0.027 seconds

Effects of Biomass Fuel Conditions on Biomass Ossification (바이오매스 가스화장치를 이용한 합성가스 생산에 있어서 연료조건의 영향)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.3
    • /
    • pp.63-71
    • /
    • 2006
  • A downdraft gasifier was made of stainless steel for biomass gasification. Internal reactor had a 300 mm diameter and 8 air intakes. Three thermocouples were installed to measure the temperature inside the reactor. Three different biomass fuels were provided in the experiments to find out the effects of fuel conditions on gasification processes; charcoals, woodchips, and mixture of woodchip and charcoals. Two different experiments were conducted fer charcoal experiments, small and larger sizes of charcoal fuels. It took about 10 minutes after ignition to generate combustible producer gas when charcoal was f9d, but 20 or more minutes for woodchips. When the gasification was stabilized, the highest temperature was observed just below the combustion zone. The air flow rate for woodchip experiment was provided at 25% of a stoichiometric requirement of combustion, which was within the range of typical air flow rate fer woody biomass gasification. Carbon monoxide concentrations were also within the values reported in the previous studies, ranging 20 to 30% depending on fuel types. It could be seen that fuel size and heating value were very important parameters in biomass gasification. These parameters should be taken into account in operating and designing biomass gasifiers.

Co-Gasification of Woodchip and Plastic Waste for Producing Fuel Gas (연료용 합성가스 생산을 위한 바이오매스와 폐플라스틱의 혼합가스화)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.75-80
    • /
    • 2012
  • Gasification is a therm-chemical conversion process to convert various solid fuels into gaseous fuels under limited supply of oxygen in high temperature environment. Considering current availability of biomass resources in this country, the gasification is more attractive than any other technologies in that the process can accept various combustible solid fuels including plastic wastes. Mixed fuels of biomass and polyethylene pellets were used in gasification experiments in this study in order to assess their potential for synthesis gas production. The results showed that higher reaction temperatures were observed in mixed fuel compared to woodchip experiments. In addition, carbon monoxide, hydrogen, and methane concentrations were increased in the synthesis gas. Heating values of the synthesis gas were also higher than those from woodchip gasification. There are hundred thousand tons of agricultural plastic wastes generated in Korea every year. Co-gasification of biomass and agricultural plastic waste would provide affordable gaseous fuels in rural society.

Development of Biomass Gasification System Using a Downdraft Gasifier (하향류식 가스화기를 이용한 바이오매스 가스화 시스템 개발)

  • Son, Young-Il;Yoon, Sang-Jun;Choi, Young-Chan;Kim, Yong-Ku;Ra, Ho-Won;Lee, Jae-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.662-665
    • /
    • 2007
  • Since biomass is given the status of "renewable resource" in contrast to "exhaustible resource" e.q., fossil fuels, it plays a significant role in the sustainable development in future. We installed a downdraft gasifier for power generation from biomass materials. The biomass raw materials were wood chips with a moisture content of 18-23 wt.%, supplied at 40-50kg/h. This paper describes on the optimum gasification air ratio that is defined as the ratio of the oxygen mole supplied into the gasifier to the oxygen mole required for complete combustion for producing syngas supplied into a gas engine. The results showed that, lower heating value of the syngas was 1200 $kcal/m^3$ $_N-dry$ and cold gas efficiency of the gasification system was 72% under optimum operating conditions.

  • PDF

Experimental Assessment of Biomass Gasification for Hydrogen Production (수소생산을 위한 바이오매스 가스화 반응의 실험적 고찰)

  • Hong, Seong Gu;Um, Byung Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.1-8
    • /
    • 2022
  • Hydrogen can be produced by gasification of biomass and other combustible fuels. Depending on oxydant agents, syngas or producer gas compositions become quite different. Since biomass has limited amount of hydrogen including moisture in it, the hydrogen concentration in the syngas is about 15% when air is supplied for oxidant agent. Experiments were conducted to investigate the channges in hydrogen concentrations in syngas with different oxidant agent conditions, fuel conditions, and external heat supply. Allothermal reaction resulted in higher concentrations of hydrogen with the supply of steam over air, reaching over 60%. Hydrogen is produced by water-gas and water-gas shift reactions. These reactions are endothermic and require enough heat. Autothermal reaction occurred in the downdraft gasifier used in the experiment did not provide enough heat in the reactions for hydrogen production. Steam seems a more desirable oxidant agent in producing the syngas with higher concentrations of hydrogen from biomass gasifications since nitrogen is included in syngas when air is used.

A Kinetic Study of Steam Gasification of Rice Straw, Saw Dust Biomass and Coal (볏집, 톱밥 바이오매스와 석탄의 수증기 가스화반응 Kinetics 연구)

  • Song, Byungho;Zhu, Xueyan
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.76-82
    • /
    • 2012
  • Biomass and coal are great potential energy sources for gasification process. These solids can be gasified to produce syngas and bio-oil which can be upgraded further to transportation fuel. Two biomass and three coals have been gasified with steam in a thermobalance reactor under atmospheric pressure in order to evaluate their kinetic rate information The effects of gasification temperature ($600{\sim}850^{\circ}C$) and partial pressure of steam (30~90 kPa) on the gasification rate have been investigated. The three different types of gas-solids reaction models have been applied to the experimental data to compare their predictions of reaction behavior. The modified volumetric reaction model predicts the conversion data well, thus that model was used to evaluate kinetic parameters in this study. The gasification reactivity of five solids has been compared. The obtained activation energy of coal and biomass gasification were well in the reasonable range. The expression of apparent reaction rates for steam gasification of five solids have been proposed as basic information for the design of coal gasification processes.

A Reaction Kinetic Study of CO2 Gasification of Petroleum Coke, Biomass and Mixture (석유 코크스, 바이오매스, 혼합연료의 이산화탄소 가스화 반응 연구)

  • Kook, Jin Woo;Shin, Ji Hoon;Gwak, In Seop;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.184-192
    • /
    • 2015
  • Characteristics of Char-$CO_2$ gasification for petroleum coke, biomass and mixed fuels were compared in the temperature range of $1,100{\sim}1,400^{\circ}C$ using TGA (Thermogravimetric analyzer). Kinetic constants with respect to reaction temperature were determined by using different gas-solid reaction models. Also activation energy (Ea) and pre-exponential factors ($K_0$) in each models were calculated by using Arrhenius equation and then were compared with experimental values to determine reaction rate equation for char-$CO_2$ gasification. Reaction time for $CO_2$ gasification decreased with an increase of reaction temperature. Also, the activation energy of $CO_2$ gasification reaction for mixture with petroleum coke and biomass decreased with increasing biomass contents. This indicates that mixing with biomass could bring synergy effects on $CO_2$ gasification reaction.

Gasification of Coal and Torrefied Biomass Mixture (석탄과 반탄화 바이오매스 혼합연료의 가스화)

  • OH, GUNUNG;JANG, JIN YOUNG;RA, HO WON;SEO, MYUNG WON;MUN, TAE YOUNG;LEE, JAE-GOO;YOON, SANG JUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.190-199
    • /
    • 2017
  • Air-blown Gasification of coal and torrefied biomass mixture is conducted on fixed-bed gasifier. The various ratio (9:1, 8:2, 7:3) of coal and torrefied biomass mixture are used. The contents of $H_2$, CO in the syngas were increased with gasification temperature. Carbon conversion tend to increase with temperature and equivalence ratio (ER). However, cold gas efficiency showed maximum point in ER range of 0.26-0.36. The torrefied biomass showed highest cold gas efficiency of 67.5% at $934^{\circ}C$, ER 0.36. Gasification of 8:2 mixture showed the highest carbon conversion and cold gas efficiency and synergy effect.

Reforming Tar from Biomass Gasification using Limonite and Dolomite as Catalysts

  • Kim, Hee-Joon;Kunii, Hiroo;Li, Liuyun;Shimizu, Tadaaki;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.298-302
    • /
    • 2011
  • In this study, Catalytic reforming with vapor and biomass gasification was simultaneously performed in a same fixed bed reactor at $600-800^{\circ}C$. Light gases were produced from reformation of the tar (fuel gases) in biomass gasification by using limonite and dolomite, as catalysts. Hydrogen and carbon dioxide are main components in light gases. Hydrogen yields increased with temperature increasing in the range of $650-800^{\circ}C$, because the water shift reaction was promoted by catalyst. The yield of hydrogen gas was increased about 160% under catalyst with the mixture of limonite and dolomite comparing to limonite only.

Development and Assessment of a Downdraft Gasifier for Biomass Gasification (하향식 바이오매스 가스화장치의 개발 및 평가)

  • Hong, Seong-Gu;Shim, Jae-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.89-97
    • /
    • 2008
  • A downdraft gasifier was manufactured for biomass gasification. The gasifier was designed based on the principles of gasification presented in previous studies. The pipes of 25mm diameter were used for both supplying air and discharging producer gas. Wood charcoals were mostly used for fuels. The concentration of CO ranged from 25 to 35%, comparable to the values presented in other studies. The temperature outside wall of the gasifier was measured up to $400^{\circ}C$, indicating a great heat loss. When glass wool was cover over the wall, some parts of wire mesh located in the bottom of the reactor were molten down. There were several modifications that should be made in order to improve its efficiency and obtain more stable continuous gasification, including insulation, reduction in pressure loss, durable bottom meshes, the optimum length of reaction part, and safety.

Study on a Carbon Dioxide Gasification for Wood Biomass using a Continuous Gasifier (연속식 가스화로를 이용한 목질계 바이오매스 이산화탄소 가스화 연구)

  • Park, Min Sung;Chang, Yu Woon;Jang, Yu Kyung;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.704-710
    • /
    • 2014
  • Biomass is considered an alternative energy which can solve an greenhouse gas problem like $CO_2$ which is a major contributor to global warming. The biomass can be converted to various energy sources through thermochemical conversion. In this study, a continuous gasifier was engineered for a wood biomass gasification. The biomass was used a waste wood. The experiments of $CO_2$ gasification were achieved as the gasification temperature, moisture content and input $CO_2$ concentration. The results showed that the yield of producer gas increased with an increasing the gasification temperature. The amount of the light tar increased due to the decomposition of gravimetric tar by the thermal cracking, and the char was confirmed pore development through the SEM analysis. The CO concentration was increased with an increased input $CO_2$ concentration from Boudouard reaction. Through the parametric screening studies, the hydrogen and carbon monoxide concentration were 32.91% and 48.33% at the optimal conditions of this test rig.