• Title/Summary/Keyword: Biomass accumulation

Search Result 231, Processing Time 0.019 seconds

Characterization of Biomass Production and Seedling Establishment of Direct-Seeded Nogyangbyeo, a Whole Crop Rice Variety for Animal Feed

  • Yang, Woon-Ho;Choi, Kyung-Jin;Kwak, Kang-Su;Park, Tae-Shik;Oh, Min-Hyuk;Shin, Jin-Chul;Kim, Jong-Geun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.249-258
    • /
    • 2007
  • Experiments were conducted with aims to (1) estimate the biomass yield potential, (2) characterize the biomass and digestible dry matter production, and (3) reveal the characteristic seedling establishment of a whole crop rice variety, Nogyangbyeo, in dry- and wet-seeded rice. Maximum aboveground total biomass of Nogyangbyeo was 18 t $ha^{-1}$ in dry-seeded rice and 20 t $ha^{-1}$ in wet-seeded rice. Biomass yield potential of Nogyangbyeo was lower than that of Dasanbyeo. Comparatively, Nogyangbyeo was straw-dependent and Dasanbyeo was grain-dependent for biomass accumulation. Percentage of digestible dry matter (DDM) was higher in panicles than straw. Digestible dry matter yield was determined mainly by biomass yield rather than DDM percentage. Number of seedling establishment in Nogyangbyeo was $73m^{-2}$ in dry-seeded rice and $109m^{-2}$ in wet-seeded rice. Poor seedling establishment of dry-seeded Nogyangbyeo in the field condition was the result of low seed germination under low temperature and poor seedling emergence by deep sowing. Low seedling emergence rate of Nogyangbyeo was attributed mainly to slow elongation growth by slow leaf development and partly to mesocotyl and 1st internode lengths, not to genetically defined leaf length. The slow elongation growth of Nogyangbyeo was the same even in the high daily mean temperature of $24^{\circ}C$. Results suggest DDM yield in rice can be improved simply by increasing biomass and whole crop rice varieties should be adaptable to direct-seeding.

Comparison of Carbon Sequestration Potential of Winter Cover Crop Cultivation in Rice Paddy Soil

  • Lee, Seul-Bi;Haque, Mozammel;Pramanik, Prabhat;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.234-242
    • /
    • 2011
  • BACKGROUND: Cultivation of winter cover crops is strongly recommended to increase land utilization efficiency, animal feeding material self-production, and to improve soil and environmental quality. METHODS AND RESULTS: Four major winter crops (barley, Chinese milk vetch, hairy vetch, and rye) having different C/N ratio were seeded in silt loam paddy soil in the November 2007 and the aboveground biomass was harvested on the late May 2008 to evaluate its effectiveness as green manure, and root biomass distribution was characterized at the different depth (0-60 cm) to study its effect on physical properties and carbon sequestration in soil. During this experiment, the naturally growing weed in the rice paddy soil in Korea, short awn foxtail (Alopecurus aequalis Sobol), was considered as control treatment. Above-ground biomass of all cover crops selected was significantly higher than that of the control treatment (2.8 Mg/ha). Comparatively higher above-ground biomass productivity of rye and barley (15.8 and 13.5 Mg/ha, respectively) suggested that these cover crops possibly had the highest potential as a green manure and animal feeding material. Root biomass production of different cover crops followed the same trend as that for their above ground biomass. Rye (Secale cereal) might have the highest potential for soil C accumulation (7893 C kg/ha) by root biomass development, and then followed by barley (6985 C kg/ha), hairy vetch (6467 C kg/ha), Chinese milk vetch (6671 C kg/ha), and control (5791 C kg/ha). CONCLUSION(s): Cover crops like rye and barley having high biomass productivity might be the most effective winter cover crops to increase organic carbon distribution in different soil aggregates which might be beneficial to improve soil structure, aeration etc. and C sequestration.

Isolation and Characterization of Novel Chlorella Species with Cold Resistance and High Lipid Accumulation for Biodiesel Production

  • Koh, Hyun Gi;Kang, Nam Kyu;Kim, Eun Kyung;Suh, William I.;Park, Won-Kun;Lee, Bongsoo;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.952-961
    • /
    • 2019
  • Chlorella spp. are green algae that are found across wide-ranging habitats from deserts to arctic regions, with various strains having adapted to survive under diverse environmental conditions. In this study, two novel Chlorella strains (ABC-002, ABC-008) were isolated from a freshwater lake in South Korea during the winter season and examined for possible use in the biofuel production process. The comparison of ABC-002 and ABC-008 strains with Chlorella vulgaris UTEX265 under two different temperatures ($10^{\circ}C$, $25^{\circ}C$) revealed their cold-tolerant phenotypes as well as high biomass yields. The maximum quantum yields of UTEX25, ABC-002, and ABC-008 at $10^{\circ}C$ were 0.5594, 0.6747, and 0.7150, respectively, providing evidence of the relatively higher cold-resistance capabilities of these two strains. Furthermore, both the biomass yields and lipid content of the two novel strains were found to be higher than those of UTEX265; the overall lipid productivities of ABC-002 and ABC-008 were 1.7 ~ 2.8 fold and 1.6 ~ 4.2 fold higher compared to that of UTEX265, respectively. Thus, the high biomass and lipid productivity over a wide range of temperatures indicate that C. vulgaris ABC-002 and ABC-008 are promising candidates for applications in biofuel productions via outdoor biomass cultivation.

Effect of Inoculum Size on Biomass Accumulation and Ginsenoside Production by Large-Scale Cell Suspension Cultures of Panax ginseng

  • Thanh Nguyen Trung;Murthy Hosakatte Niranjana;Yu Kee-Won;Jeong Cheol Seung;Hahn Eun-Joo;Paek Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.265-268
    • /
    • 2004
  • Cell growth and ginseng saponin production by large-scale suspension (bioreactor) cultures of Panax ginseng were investigated under various inoculum sizes. Cell growth was low at an inoculum size of 40 g FW/L, and the maximum cell growth was obtained with increasing inoculum size up to 100 g FW/L. The cell density of 333 g FW/L and 12.7 g DW/L was obtained at inoculum size of 100 g FW/L after 30 days of cultivation. Maximum saponin production of $4.40\;\cal{mg/g}$ DW was achieved at 60 g FW/L of inoculum size. Thus, inoculum size 60 g FW/L was suitable for optimum biomass accumulation as well as saponin production during bioreactor cultivation of ginseng suspension cells.

Effects of various Nitrite and Ammonium Nitrogen Concentrationes in the Application of ANAMMOX of Piggery Waste (돈사폐수의 ANAMMOX 적용에 있어서 아질산성 질소 및 암모니아성 질소의 농도에 따른 영향)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.482-491
    • /
    • 2006
  • The anaerobic ammonium oxidation (ANAMMOX) from substrates with various $NO_2-N$ and $NH_4-N$ concentationes, which were generated from piggery waste was accomplished by using anaerobic granular sludge as seeding sludge. As the result of operation, when $NO_2-N/NH_4-N$ ratios of ANAMMOX influent were 0.6~1.5, $NO_2-N/NH_4-N$ removal ratios were exhibited 1.19~2.07 (average 1.63). The higher influent $NO_2-N/NH_4-N$ ratios resulted in higher $NO_2-N/NH_4-N$ removal ratios by ANAMMOX. It means that $NO_2-N$ concentration is very important factor in ANAMMOX. Specific ammonium removal rate was constantly as $0.03{\sim}0.04gNH_4-N/g$ VSS-day at $35^{\circ}C$ while it was $0.01gNH_4-N/g$ VSS-day at $20{\sim}30^{\circ}C$. Thus, in order to reduce the effluent N concentration, either an increase of ANAMMOX reactor HRT or more biomass accumulation at the optimal temperature can be considered.

Effects of Nutrient Levels on Cell Growth and Secondary Carotenoids Formation in the Freshwater Green Alga, Chlorococcum sp.

  • Liu, Bei-Hui;Haizhang, Dao;Lee, Yuan-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.201-207
    • /
    • 2000
  • The freshwater green alga Chlorococcum sp. grew on NH_4^{+},{\;}NO_3^{-}$, urea, yeast extract, and peptone as the nitrogen source showing similar pattens of growth and secondary carotenoid (SC) production. However, the most suitable nitrogen source for the induction fo SC was urea. The dffects of nutrient levels (urea, phosphate, sulfate, ferrous iron, and salt) on growth and SC production were stydied by varying the concentration of each nutrient in batch cultures. High biomass production was achieved in cultures containing 20-28 mM urea, 4.8-10 mM phosphate, 1.6 mM sulfate, 70 mM phosphate, 1.6 mM sulfate, 170 mM NACl, and $50{\;}\mu\textrm{M}$ iron. The optimum concentrations of nutrients for biomass and for the SC accumulation in biomass were evaluated and the two media for achieving high biomass production and SC production were thus developed. The extent to which each parameter to stimulate the formation of SC in the alga were varied and the potentially improned SC prodution by manipulating the nutrient levels in the modified media were descussed.

  • PDF

Biomass and Nutrient Distribution in Unthinned Korean White Pine Plantation in Chuncheon, Gangwon Province (강원도 춘천지역 비시업 잣나무림의 현존량과 양분분포)

  • Han, S.K.;Yi, M.J.;Kwon, Y.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.16 no.1
    • /
    • pp.77-91
    • /
    • 2014
  • This study was performed to provide basal data for effective nutrient control and productivity improvement of the Korean white pine stand. The objectives of this study were to investigate biomass and nutrient distribution in the unthinned Korean white pine plantation which is located in chuncheon, Gangwon province. Aboveground of the stand was estimated by the method of allometric relationship between tree component(kg) and diameter at breast height(DBH, cm). Total above ground biomass of the stand was 127.9t/ha. The relative ratio of stem, living branch, needle compared with total aboveground biomass were 57.9, 16.1, 12.7 and 13.3%, respectively. All nutrients were highly accumulated in needle and N had the largest proportion in the total amount of nutrient accumulation and followed by Ca, K, Mg, P. The amount of nutrient restoration in the Korean white pine was 6,852kg/ha for N, 1,916kg/ha for Ca, 889kg/ha for K, 518kg/ha for Mg, and 124kg/ha for P.

Biomass and Net Production of a Natural Quercus mongolica Forest in Namsan, Seoul (서울 남산지역 신갈나무 천연림의 물질생산)

  • Park In-Hyeop;Kim Dong-Yeob;Son Yow-han;Yi Myong-Jong;Jin Hyun-O;Choi Yun-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.19 no.3
    • /
    • pp.299-304
    • /
    • 2005
  • Biomass and net production of the three 46-to 52-year-old natural Queycus mongojica stands were investigated in Namsan Park at Seoul. Total above- and belowground biomass including understory vegetation for the three stands ranged from 14776t1ha to 278.48t/ha and total net production ranged from 6.96t/ha/yr to 11.11t/yr. Understory vegetation biomass for the three stands ranged from $0.14\%\;to\;1.14\%$ of total biomass. Biomass accumulation ratio for the three stands ranged from 20.72 to 25.07 and net assimilation ratio as an index of foliage photosynthetic efficiency ranged from 2.79 to 3.34. Net production and net assimilation ratio of this study stands which were located in Namsan Park of central Seoul were low compared to the natural Quercus mongojica forests in other districts in Korea.

Application of Saccharified Acorn-starch for Biomass and Lipid Accumulation of Microalgae (당화된 도토리의 전분이 미세조류 바이오매스 증식과 바이오오일 함량에 미치는 영향)

  • Choi, Hee-Jeong;Lee, Jung-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.197-204
    • /
    • 2016
  • The growth of the algae strain Chlorella vulgaris under mixotrophic conditions in the presence of saccharified acorn-starch (acorn-glucose) was evaluated with the objective of increasing biomass growth and triacylglycerols (TAGs) content. The results indicated that 81.3% of starch was converted to glucose in acorns. C.vulgaris algal strains grown with acorn-glucose produced higher biomass and TAGs content than with autotrophic growth. The highest biomass production and TAGs content with 3 g/L acorn-glucose were 12.44 g/L and 32.9%, respectively. Biomass production with 3 g/L acorn-glucose was 16.4 fold higher than under autotrophic growth condition. These findings suggested that 3 g/L acorn-glucose is economic and efficient for biomass production/productivity and TAGs content of microalgae. This study provides a feasible way to reduce the cost of bioenergy production from microalgae.

Effect of Distribution System Materials and Water Quality on Heterotrophic Plate Counts and Biofilm Proliferation

  • CHANG , YOUNG-CHEOL;JUNG, KWEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1114-1119
    • /
    • 2004
  • The biofilms on pipe walls in water distribution systems are of interest since they can lead to chlorine demand, coliform growth, pipe corrosion, and water taste and odor problems. As such, the study described in this paper is part of an AWWARF and Tampa Bay Water tailored collaboration project to determine the effect of blending different source waters on the water quality in various distribution systems. The project was based on 18 independent pilot distribution systems (PDS), each being fed by a different water blend (7 finished waters blended in different proportions). The source waters compared were groundwater, surface water, and brackish water, which were treated in a variety of pilot distribution systems, including reverse osmosis (RO) (desalination), both membrane and chemical softening, and ozonation-biological activated carbon (BAC), resulting in a total of 7 different finished waters. The observations from this study consistently demonstrated that unlined ductile iron was more heavily colonized by a biomass than galvanized steel, lined ductile iron, and PVC (in that order) and that the fixed biomass accumulation was more influenced by the nature of the supporting material than by the water quality (including the secondary residual levels). However, although the bulk liquid water cultivable bacterial counts (i.e. heterotrophic plate counts or HPCs) did not increase with a greater biofilm accumulation, the results also suggested that high HPCs corresponded to a low disinfectant residual more than a high biofilm inventory. Furthermore, temperature was found to affect the biofilms, plus the AOC was important when the residual was between 0.6 and 2.0 mg $Cl_2/l$. An additional aspect of the current study was that the potential of the exoproteolytic activity (PEPA) technique was used along with a traditional so-called destructive technique in which the biofilm was scrapped off the coupon surface, resuspended, and cultivated on an R2A agar. Both techniques indicated similar trends and relative comparisons among the PDSs, yet the culturable biofilm values for the traditional method were several orders of magnitude lower than the PEPA values.