• 제목/요약/키워드: Biomass Yield

검색결과 647건 처리시간 0.035초

에틸렌글리콜의 수증기 개질반응을 이용한 수소제조에 대한 열역학적 평형 및 효율 분석 (Thermodynamic Equilibrium and Efficiency of Ethylene Glycol Steam Reforming for Hydrogen Production)

  • 김경숙;박찬현;전진우;조성열;이용걸
    • Korean Chemical Engineering Research
    • /
    • 제47권2호
    • /
    • pp.243-247
    • /
    • 2009
  • 본 연구는 수소제조를 위한 에틸렌글리콜 수증기 개질반응에 대한 열역학적 특성 분석을 목적으로 한다. 이를 위하여 온도(300~1,600 K), 반응물 조성비(Steam/Carbon ratio=0.5~4.5), 압력(1~30 기압) 등의 다양한 반응조건을 변화시키면서 열역학적 평형조성 및 효율 등을 조사하였다. 주어진 조건하에서 흡열반응인 개질반응과 발열반응인 수성가스 전환반응 및 메탄화반응간 경쟁특성을 확인하였으며, 반응온도 400 K를 지나면서 수소발생이 관찰되어 500 K를 지나면서 급격한 발생량의 증가를 확인하였다. 반응물 가운데 수증기의 비율을 양론비(S/C=1.0) 이상으로 증가시킬 경우 수성가스 전환반응이 촉진되어 일산화탄소 저감 및 수소발생 증가 거동을 나타내었다. 결과적으로 열역학적 효율감소를 최소화 하면서 수소발생량을 극대화할 수 있는 조건은 반응온도 900 K 이상 및 수증기 대 탄소간 비율이 3.0 이내의 범위에 해당하는 것으로 판단된다.

꽃게액비 엽면시비가 추부 들깻잎의 영양성분에 미치는 영향 (Effects of Liquid Fertilizer of Portunus trituberculatus Foliar Application on the Proximate Components of Chubu Perilla frutescens Leaves)

  • 안갑선;조전권;안승원;조현주
    • 한국환경과학회지
    • /
    • 제25권11호
    • /
    • pp.1583-1587
    • /
    • 2016
  • The purpose of this study was to investigate the effects of fertilizer application on the content of functional materials, such as fatty acids and organic acids in perilla leaves. (1) As compared to the controlled with Ammonium sulfate fertilizer, the yield of Perilla frutescens leaves increased by 7.3% and 12.8% of biomass at 2000 and 1000 times liquid respectively, but decreased by 7.6% at 500 times. The lipid and protein contents of perilla leaves were higher than those of Portunus trituberculatus liquid at 1000 times. The average contents of minerals (mg/100g) were as follows; K (638.4) > Ca (561.6) > P (145.4) > Mg (133.5) > Fe (36.2) > Zn (1.9) > Mn (1.6) > Na (1.4 mg). However, the correlation between the controlled with P. trituberculatus liquid was relatively low. (2) The fat-soluble vitamin E content of P. frutescens leaves was 3.4, 3.9, 3.3, and 3.9 mg in the controlled with liquid by 500, and 1000, 2000 times respectively; Vitamin A contents were 6.4, 8.9, 10.9, and 8.5 mg respectively, which was more than twice as much as the corresponding vitamin E content. The water soluble vitamin C contents were 177.9, 172.6, 195.2, and 163.5 mg respectively. (3) Amino acid contents of P. frutescens leaves in 100 g of fresh weight were 3821.7 mg in the controlled with Ammonium sulfate fertilizer and 3918.8, 4054.0, and 4005.4 mg in the controlled with P. trituberculatus liquid at 2,000, 1000, 500 times respectively. Amino acid contents of each controlled group with P. trituberculatus liquid above were as small as 2.5~6.1%, and these contents of amino acid were as follows: Glutaminic acid > Aspartic acid > Leucine > Arginine > Phenylalanine. In further study, it is necessary to develop an effective microorganism and a variety of amino acid fertilizer to supplement the study on new manufacturing.

Effect of seeding dates at a hilly pasture establishment on its growth characteristics and productivity

  • Jung, Jeong Sung;Choi, Ki Choon;Kim, Hyeon shup;Choi, Gi Jun;Kim, Won Ho
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.325-325
    • /
    • 2017
  • In the 20th century, the average temperature of Korea has risen by $1.5^{\circ}C$, whereas it has risen by $0.6^{\circ}C$ globally. Few studies have investigated the effect of seeding date in hilly pastures on their growth characteristics and productivity. The purpose of this study was to elucidate the effect of seeding dates at a hilly pasture establishment on its growth characteristics and productivity caused by increasing temperatures in Korea. The experiments were conducted from 2014 to 2016 at Pyeongchang, South Korea, at an altitude 600-700 m above sea level. The composition of grass mixture was tall fescue, orchard grass, perennial ryegrass, Kentucky bluegrass, timothy, and white clover. Treatments comprised four seeding dates (August 13 and 27, and September 10 and 24). The establishment rate was lowest on September 24, resulting in only 20% establishment over the winter, and the proportion of weeds was highest on September 24 (58%). Early seedling growth before overwintering is a critical approach to ensure successful establishment of grassland. The main components were orchard grass and tall fescue on the early seeding date (August 13), and Kentucky bluegrass on the late seeding date (September 24). Late seeding increased the proportion of bare lands invaded by weed species, especially during second and third cutting periods. Early seeding date resulted in a progressive increase in biomass. Total annual production was significantly affected by the seeding date; lowest dry matter production was on September 24 ($2,441kg\;ha^{-1}$), whereas maximum dry matter yield was on August 27 ($6,608kg\;ha^{-1}$). The results of the study indicate that growth condition and productivity could be increased by early seeding, and seeding of grass in the Pyeongchang area should be completed before August 27. However, further studies are needed to determine the ideal seeding date at the hilly pasture establishment in Pyeongchang.

  • PDF

Exploration of suitable rice cultivars for close mixed-planting with upland-adapted cereal crop

  • Shinohara, Nodoka;Shimamoto, Hitoshi;Kawato, Yoshimasa;Wanga, Maliata A.;Hirooka, Yoshihiro;Yamane, Koji;Iijima, Morio
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.304-304
    • /
    • 2017
  • In semi-arid countries such as Namibia, the flooding unexpectedly happens in a rainy season, causing losses in the yield of upland-adapted cereal crop. In flooding conditions, rice roots sequentially form aerenchyma and a barrier to radial oxygen loss (ROL), and oxygen is released into the rhizosphere near the root tips. Iijima et al. (2016) and Awala et al. (2016) reported that close mixed-planting with rice can mitigate the flood stress of co-growing upland-adapted cereal crop by modifying their rhizosphere microenvironments via the oxygen released from the rice roots. Moreover, by using the model system of hydroponic culture, it was confirmed that oxygen from rice roots was transferred to co-growing upland-adapted cereal crop in close mixed planting system (Kawato et al., 2016). However, it is not sure whether the ability of oxygen release varies among rice cultivars, because Kawato et al. (2016) used only one japonica cultivar, Nipponbare (Oryza sativa). The objective of this study was to compare the ability of oxygen release in rhizosphere among rice cultivars. The experiment was conducted in a climate chamber in Kindai University. We used 10 rice cultivars from three different rice species (O. sativa (var. japonica (2), var. indica (3)), Oryza glaberrima Steud. (2) and their interspecific progenies (3)) to compare the ability of oxygen release from the roots. According to the method by Kawato et al. (2016), the dissolved oxygen concentration of phase I (with shoot) and phase II (without shoot) were measured by a fiber optic oxygen-sensing probe. The oxygen released from rice roots was calculated from the difference of the measurements between phase I and phase II. The result in this study indicated that all of the rice cultivars released oxygen from their roots, and the amount of released oxygen was significantly correlated with the above-ground biomass (r = 0.710). The ability of oxygen release (the amount of the oxygen release per fresh root weight) of indica cultivars (O. sativa) tended to be higher as compared with the other cultivars. On the other hand, that of African rice (O. glaberrima) and the interspecific progenies tended to be lower. These results suggested that the ability of oxygen release widely varies among rice cultivars, and some of indica cultivars (O. sativa) may be suitable for close mixed-planting to mitigate flood stress of upland-adapted cereal crop.

  • PDF

Elucidation of the physiological basis related to high photosynthetic capacity of soybean local variety, 'Peking'.

  • Sakoda, Kazuma;Suzuki, Seita;Tanaka, Yu;Shiraiwa, Tatsuhiko
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.239-239
    • /
    • 2017
  • The enhancement of leaf photosynthetic capacity can have the potential to improve the seed yield of soybean. Key targets for the increase of leaf photosynthetic capacity remains unclear in soybean. Peking, Chinese local variety, has been the useful material for soybean breeding since it shows various resistances against biotic and abiotic stress. Sakoda et al., 2017 reported that Peking had the higher capacity of leaf photosynthesis than Enrei, Japanese elite cultivar. They identified the genetic factors related to high photosynthetic capacity of Peking. The objective of this study is to elucidate the physiological basis underlying high photosynthetic capacity of Peking. Peking and Enrei were cultivated at the experimental field of the Graduate School of Agriculture, Kyoto University, Kyoto, Japan. The sowing date was July 4, 2016. Gas exchange parameters were evaluated at the uppermost fully expanded leaves on 43, 49, and 59 days after planting (DAP) with a portable gas exchange system, LI-6400. The leaf hydraulic conductance, $K_{leaf}$, was determined based on the water potential and transpiration rate of the uppermost fully expanded leaves on 60 DAP. The morphological traits related to leaf photosynthesis were analyzed at the same leaves with the gas exchange measurements. The light-saturated $CO_2$ assimilation rate ($A_{sat}$) of Peking was significantly higher than that of Enrei at 43 and 59 DAP while the stomatal conductance ($g_s$) of Peking was significantly higher at all the measurements (p < 0.05). It suggested that high $A_{sat}$ was mainly attributed to high $g_s$ in Peking. $g_s$ is reported to be affected by the morphological traits and water status inside the leaf, represented by $K_{leaf}$, in crop plants. The tendency of the variation of the stomatal density between two cultivars was not consistent throughout the measurements. On the other hand, $K_{leaf}$ of Peking was 59.0% higher than that of Enrei on 60 DAP. These results imply that high $g_s$ might be attributed to high $K_{leaf}$ in Peking. Further research is needed to reveal the mechanism to archive high $g_s$ on the basis of water physiology in Peking. The knowledge combining the genetic and physiological basis underlying high photosynthetic capacity of Peking can be useful to improve the biomass productivity of soybean.

  • PDF

Identification of the quantitative trait loci for breaking and bending types lodging resistance in rice, using recombinant inbred lines derived from Koshihikari and a strong culm variety, leaf star

  • Samadi, Ahmad Fahim;Yamamoto, Toshio;Ueda, Tadamasa;Adachi, Shunsuke;Hirasawa, Tadashi;Ookawa, Taiichiro
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.93-93
    • /
    • 2017
  • To develop rice cultivars with increased biomass and grain yield, superior lodging resistance is an essential trait. The new breeding approach can be adopted for the improvement of stem lodging resistance by enhancing culm strength. The resistance to breaking type lodging is attributed to bending moment of basal culm (M), which is composed of the section modulus (SM) and bending stress (BS). The resistance to the bending type lodging is attributed to flexural rigidity (FR) of stem, which is composed of the secondary moment of inertia (SMI) and Young's modulus (YM). Starch and cell wall components such as cellulose, hemicellulose and lignin also play a significant role in physical strength of culm, and thus affect lodging. Leaf Star has a superior lodging resistance due to its thick and stiff culm because of its high M and FR compared with Koshihikari. Furthermore, Leaf Star contains high densities of hemicellulose, cellulose and low lignin density in culm compared with Koshihikari. In this study, we performed QTL analysis for these traits associated with culm strength, using 94 recombinant inbred lines (RILs, $F_8$), derived from a cross between Leaf Star and Koshihikari. The SM in the RILs showed a continuous distribution. QTLs for SM were detected on chrs.2, 3 and 10. Leaf Star alleles increased SM on chrs. 2 and 3, but Koshihikari allele increased on chr.10. These QTLs overlapped with those QTLs identified using backcrossed inbred line derived from a cross between Chugoku 117 and Koshihikari, the parents of Leaf Star. The FR in Leaf Star was higher than that in Koshihikari due to the larger SMI and YM. 3 QTLs for SMI were detected on chrs.2, 3 and 10. Leaf Star alleles increased SMI on chrs.2 and 3, and Koshihikari alleles increased on chr.10. One QTL on chr.3 and two QTLs on chr.5 for hollocelulose content were detected with Leaf Star alleles contribution. Moreover, two QTLs were detected for hemicellulose density on chrs.3 and 5. Leaf Star allele increased hemicellulose density on chr.5, and Koshihikari allele increased on chr.3. Furthermore, two QTLs for cellulose density were detected on chr.5, and one QTL on chr.2. For starch content, one QTL on chr.3 and two QTLs on chr.5 with Leaf Star alleles contribution were detected. TULK-6 carrying a chromosome segment of Leaf Star on chr.5 in the Koshihikari genetic background showed higher densities of starch and hemicellulose than those in Koshihikari. These results suggest that the detected QTLs for culm strength could be utilized for the improvement of lodging resistance in rice by marker-assisted selection.

  • PDF

Modeling the effects of excess water on soybean growth in converted paddy field in Japan. 2. modeling the effect of excess water on the leaf area development and biomass production of soybean

  • Nakano, Satoshi;Kato, Chihiro;Purcell, Larry C.;Shiraiwa, Tatsuhiko
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.308-308
    • /
    • 2017
  • The low and unstable yield of soybean has been a major problem in Japan. Excess soil moisture conditions are one of the major factors to restrict soybean productivity. More than 80 % of soybean crops are cultivated in converted paddy fields which often have poor drainage. In central and eastern regions of Japan, the early vegetative growth of soybean tends to be restricted by the flooding damage because the early growth period is overlapped with the rainy season. Field observation shows that induced excess water stress in early vegetative stage reduces dry matter production by decreasing intercepted radiation by leaf and radiation use efficiency (RUE) (Bajgain et al., 2015). Therefore, it is necessary to evaluate the responses of soybean growth for excess water conditions to assess these effects on soybean productions. In this study, we aim to modify the soybean crop model (Sinclair et al., 2003) by adding the components of the restriction of leaf area development and RUE for adaptable to excess water conditions. This model was consist of five components, phenological model, leaf area development model, dry matter production model, plant nitrogen model and soil water balance model. The model structures and parameters were estimated from the data obtained from the field experiment in Tsukuba. The excess water effects on the leaf area development were modeled with consideration of decrease of blanch emergence and individual leaf expansion as a function of temperature and ground water level from pot experiments. The nitrogen fixation and nitrogen absorption from soil were assumed to be inhibited by excess water stress and the RUE was assumed to be decreasing according to the decline of leaf nitrogen concentration. The results of the modified model were better agreement with the field observations of the induced excess water stress in paddy field. By coupling the crop model and the ground water level model, it may be possible to assess the impact of excess water conditions for soybean production quantitatively.

  • PDF

Chlamydomonas reinhardtii 연속 배양에서 수소생산을 위안 황 조절 (Sulfate Modulation for Hydrogen Production by Chlamydomonas reinhardtii in Continuous Culture)

  • 김준표;박태현;김미선;심상준
    • KSBB Journal
    • /
    • 제20권6호
    • /
    • pp.453-457
    • /
    • 2005
  • 우리는 황결핍 환경에서 C. reinhardtii에 의한 수소생산성을 증진시키기 위해 황성분의 농도가 수소생산에 미치는 영향을 조사하였고, 그 결과를 이용하여 황 재첨가에 의한 연속적인 수소생산을 수행하였다. $MgSO_4$ 용액을 농도별(0, 15, 30, 60, 120 ${\mu}M$)로 희석하여 황결핍 초기에 첨가하였을 때, 최적 황농도는 $30{\mu}M$로서 236 mL $H_2/L$ culture를 생산하였다. 황결핍 시 황성분의 첨가는 PSII 활성화에 기여하여 hydrogenase가 수소합성에 이용할 수 있는 전자를 다량 발생시키기 때문이다. 그러나 초기에 첨가해 준 황농도가 너무 높으면, 황결핍 시간이 지연($MgSO_4\;60{\mu}M$의 경우) 되거나 황결핍이 일어나지 않기($MgSO_4\;120{\mu}M$의 경우) 때문에 hydrogenase가 유도되지 않는다. 따라서 수소생산량이 다른 농도에 비해 감소하거나 수소가 전혀 생산되지 않았다. 연속적인 수소생산을 위한 황성분 재첨가는 총 4회 수행되었고, 발생된 총 수소생산량은 625 m/L $H_2/L$ culture였다. 그러나 황성분을 재첨가해 줄 때마다 수소생산량은 점차 감소되었다. 이것은 황결핍 조건에서 단일항 산소에 의한 chlorophyll 파괴 및 세포 수의 감소, 또한 배양액 내의 pH의 증가 때문에 수소생산이 감소된 것으로 사료된다. 따라서 황결핍 조건에서 조류를 이용한 연속적인 수소생산 공정을 개발하기 위해서 황성분 첨가시기를 조절하여 세포의 사멸을 방지하고, 배양액내 pH 조절을 위한 다양한 buffer 첨가 실험 등 수소생산성을 지속적으로 유지할 수 있는 다양한 연구가 필요하다.

Spirulina platensis가 생산하는 phycobilins의 spectral 특성 및 phycocyanin 색소의 안정성 (Stability of Phycocyanin and Spectral Characteristic of Phycobilins from Spirulina platensis)

  • 주동식;조순영
    • 한국수산과학회지
    • /
    • 제33권5호
    • /
    • pp.482-488
    • /
    • 2000
  • 실린더 배양기에선 구한 최적의 조건을 helical tubular photobioreactor (18L)에 맞도록 조절하여 수확한 S. platensis의 일반성분을 분석 한 결과, 단백질은 $64.5{\pm}2.8$, 당질은 $20.8{\pm}1.9$, 지방질은 $7.2{\pm}1.2$ 및 회분 함량은 $7.8{\pm}0.8$이었다. 본 균체로부터 c-phycocyanin을 추출하여 염석과 Sephadex G-100으로 정제한 결과 크게 3개의 획분이 확인되었다. 이 획분들의 스펙트럼을 분석한 결과, 최대 흡광 영역 652nm의 allophycocyanin과 최대 흡광 영역 622 nm의 c-phycocyanin이 확인되었고, 확실하지는 않지만 phycoerythrin으로 추측되는 한 획분을 얻을 수 있었다. 한편, c-phycocyanin 획분은 건조 균체량에 대해 $1.5{\%}$ 정도의 매우 높은 수율을 나타내었다. 부분 정제된 c-phycocyanin의 안정성을 실험한 결과, 저온에서는 매우 안정하였으며, $50^{\circ}C$ 이상의 온도에서는 약간 변색이 일어나는 것으로 확인되었다. 빛에 대한 반응은 15000 lux까지도 전혀 변색이 일어나지 않았으나, 25000 lux에서는 약 $25{\%}$의 변색이 일어난 것으로 나타났다. pH에 대해서는 중성부근이하 pH 4까지의 산성영역에서는 매우 안정한 것으로 나타났으며, pH 9 이상의 알칼리 영역에서는 다소 불안한 것으로 나타났는데, pH 11의 조건에서는 $15{\%}$ 정도의 변색이 일어난 것으로 확인되었다. 한편, pH, 온도 및 빛 강도의 변화에 따른 금속의 영향을 확인하지는 않았으나 본 실험 조건에서는 종류에 관계없이 c-phycocyanin의 안정성에 영향을 미치지는 않는 것으로 나타났다.

  • PDF

두과 월년생 잡초 살갈퀴의 녹비 이용성 검토 (Evaluation of Winter Annual Weed Vicia angustifolia as Green Manure)

  • 성기영;전원태;조현숙;김충국;정광호;송득영;최봉수
    • 한국잡초학회지
    • /
    • 제30권2호
    • /
    • pp.171-176
    • /
    • 2010
  • 자생 살갈퀴는 천립중이 14.9g, 종자크기가 2.8mm로 헤어리베치 27.7g, 3.41mm보다 작으며, 종자는 경실종자로 헤어리베치보다 휴면성이 높았다. 자생살갈퀴는 수원의 경우 4월초순이 되면 생장을 시작하며 무한화서로 개화기는 5월 5일경이며 6월 1일경에는 고숙기가 되어 종자채종이 가능하였다. 5월 중순이면 살갈퀴의 생장이 정지되는데 초장은 46.6~60.9cm이며 보리와 혼파를 하면 101.1cm까지 자랐다. 분지수는 2~6개이며, 착협 마디수는 분지당 3.5~3.7개, 협수는 3.8~6.6개였다. 살갈퀴 생체중은 2,960~14,450kg $ha^{-1}$로 헤어리베치 24,860kg ha-1에 비해 크게 떨어졌다. 그러나 논에서 재배한 살갈퀴는 질소함량이 61~65kg $ha^{-1}$(생체중 13,600~14,450kg $ha^{-1}$)으로 화학비료를 절감하는 녹비로서 이용할 수 있을 것으로 생각되었다. 또한 살갈퀴는 사양질 논토양에서 재발생율이 높은 특성이 있어 이에 대한 연구 가 기대된다.