• Title/Summary/Keyword: Biomass Syngas

Search Result 62, Processing Time 0.026 seconds

Evaluation of the Effects of Carbon Dioxide on the Production of Engineered Biochar (기능성 바이오차 생산을 위한 이산화탄소의 영향 평가)

  • Lee, Sangyoon;Lee, Taewoo;Kwon, E. Eilhann
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.41-49
    • /
    • 2022
  • To abate the environmental burdens arising from CO2 emissions, biochar offers a strategic means to sequester carbons due to its recalcitrant nature. Also, biochar has a great potential for the use as carbon-based adsorbent because it is a porous material. As such, developing the surface properties of biochar increases a chance to produce biochar with great adsorption performance. Given that biochar is a byproduct in biomass pyrolysis, characteristics of biochar are contingent on pyrolysis operating parameters. In this respect, this work focused on the investigation of surface properties of biochar by controlling temperature and reaction medium in pyrolysis of pine sawdust as case study. In particular, CO2 was used as reaction medium in pyrolysis process. According to pyrolytic temperature, the surface properties of biochar were indeed developed by CO2. The biochar engineered by CO2 showed the improved capability on CO2 sorption. In addition, CO2 has an effect on energy recovery by enhancing syngas production. Thus, this study offers the functionality of CO2 for converting biomass into engineered biochar as carbon-based adsorbent for CO2 sorption while recovering energy as syngas.

Study on Tar Reforming by Using the Catalyst Derived from Wastes (폐기물유래 촉매를 이용한 타르 개질에 관한 연구)

  • Sung, Hojin;Nam, Sungbang;Pakr, Yeongsu;Gu, Jaehoi
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.267-270
    • /
    • 2014
  • Since contaminants of syngas obtained from the biomass gasification are removed, the syngas is clean fuel. In this study a high-efficiency energy production system is developed. The system produces electricity using a waste pressure and feeds a low-pressure steam to Dyeing industrial complex. Also, iron oxide derived from dyeing sludge is utilized as a self-catalyst to reform a tar and reduce a tar emission from gasifier. This system increases the amount of syngas and finally achieves a highly efficient gasification.

  • PDF

A Study on Syngas Co-combustion Characteristics in a Heavy Oil Combustion System with Multi Burners (멀티 버너 중유 연소로에서의 합성 가스 혼합 연소 특성 연구)

  • Yang, Dong-Jin;Choi, Shin-Young;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.43-49
    • /
    • 2010
  • Co-combustion of syngas in an existing boiler can be one of the options for replacing conventional fossil fuel with alternative fuels such as waste and biomass. This study is aimed to investigate effects of syngas cocombustion on combustion characteristics and boiler efficiency. An experimental study was performed for a pilot-scale furnace with 4 oil burners. Tests were conducted with mixture-gas as a co-combustion fuel and heavy oil as a main fuel. The mixture-gas was composed of 15% CO, 7% $H_2$, 3% $CH_4$ and 75% $N_2$ for simulating syngas from air-blown gasification. And LHV of the mixture-gas was 890 kcal/$Nm^3$. Temperature distribution in the furnace and flue gas composition were measured for various heat replacement ratio by the mixture gas. Heat loss through the wall was also carried out through heat & mass balance calculation, in order to obtain informations related to boiler efficiency. Experimental results show that similar temperature distribution and flue gas composition can be obtained for the range of 0~20% heat replacement by syngas. NOx concentration is slightly decreased for higher heat replacement by the syngas because fuel NOx is decreased in the case. Meanwhile, heat loss is a bit decreased for higher heat replacement by the syngas, which implies that boiler efficiency can be a bit decreased when syngas co-combustion is applied to a boiler.

Experimental Evaluation of Synthesis Gas Production from Air Dried Woodchip (풍건 목편을 이용한 합성가스 생산에 대한 실험적 고찰)

  • Hong, Seong-Gu;Wang, Long
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.17-22
    • /
    • 2011
  • Biomass gasification provides synthesis gas or syngas that can be used for internal combustion engines as fuel or chemical synthesis as feedstock. Among different types of gasifiers, downdraft gasifier can produce relatively clean syngas with lower tar contents. In this study, a downdraft gasifier was fabricated with 150 mm of hearth diameter to gasify woodchip that is commercially available in this country. After drying woodchip to about 20 %, gasification experiments were conducted measuring temperature, pressure, air and gas flow rates. The volumetric concentrations of CO, $H_2$, $CO_2$, $CH_4$ were 10.7~14.5, 16.5~21.4, 12.5~16.6, and 2.3~2.9, respectively. They were overall within the ranges of the results that the previous studies showed. However, CO concentration was relatively lower and H2 was slightly higher than those from other studies. It seemed that water gas shift reaction was occurred due to the moisture in the fuel woodchip. Additional drying process coupled with syngas cooling would be required to improve the overall efficiency and syngas quality.

The effect on the components variation of syngas by changing temperature and steam addition in biomass gasification process (바이오매스 가스화 과정에서의 온도와 가습의 변화가 전환가스 조성에 미치는 영향)

  • Ahn, Seong-Yool;Choi, Gyung-Min;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3429-3434
    • /
    • 2007
  • An experimental study was carried out to investigate gasification process of wood sawdust in the I-dimensional downdraft fixed bed gasifier. The preheated air was used oxidizer and steam were used as a gasifying agent. The operating parameters, the supplied air temperature and steam were used. The oxidizer temperature was varied from 500K to 620K and vapor was added. The gasification process was monitored by measuring temperature at three position near the biomass using R-type thermocouples and the syngas composition was analyzed by gas chromatograph. The change of hydrogen and carbon monoxide, carbon dioxide, methane was observed. Overall, the volume fraction of hydrogen and methane were increased widely as increasing the oxidizer temperature and adding steam.

  • PDF

The effect oxidizer temperature and steam addition on caloric value in biomass gasification process (공급공기의 온도 변화와 수증기가 바이오매스 가스화 과정에서 전환가스의 발열량에 미치는 영향)

  • Ahn, Seong-Yool;Mun, Cheol-Eon;Choi, Gyung-Min;Kim, Duck-Jool
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.606-609
    • /
    • 2007
  • An experimental study was carried out to investigate the heat value change by various conditions of wood sawdust gasification in the 1-dimensional downdraft flow fixed bed gasifier. The preheated air and steam were used as a gasifying agent. The components of syngas were influenced increasing residence time of supplied agent. The operating parameters, the supplied agent temperature and steam addition were used. The oxidizer temperature was varied from 500K to 620K. The gasification process was monitored by measuring temperature at three points near the biomass using R-type thermocouples and the syngas composition was analyzed by gas chromatograph. We get the sample gas at the end of gasifier. Finally, the amount of hydrogen and methane were increased widely as increasing the oxidizer temperature and adding steam.

  • PDF

Development of a Methanol Absorption System for the Removal of $H_2S$, COS, $CO_2$ in Syngas from Biomass Gasifier (바이오매스 가스화 내의 $H_2S$, COS, $CO_2$ 복합 제거를 위한 메탄올 흡수탑 개발)

  • Eom, Won Hyun;Kim, Jae Ho;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.23-27
    • /
    • 2012
  • To make synthetic liquid fuel from biomass such as wood pellet, energy crop and so on, a biomass to liquid (BTL) process by using a biomass gasifier with Fisher-Tropsch (FT) reaction was developed. However $H_2S$, COS and $CO_2$ in syngas from biomass gasifiers resulted in a decrease of the conversion efficiency and the deactivation of the catalyst. To remove acid gases in syngas, a lab-scale methanol absorption tower was developed and the removal characteristics of acid gases were investigated. The methanol absorption tower efficiently removed $H_2S$ and COS with a removal of $CO_2$, so it could be useful process for the BTL process.

A Study on Syngas Co-Combustion Characteristics in a 0.7 MWth Water-Tube Boiler with Single Heavy Oil Burner (중유 싱글 버너 수관식 보일러에서의 합성가스 혼합연소 특성 연구)

  • Choi, Sin-Yeong;Yang, Dong-Jin;Bang, Byoung-Yeol;Yang, Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.452-459
    • /
    • 2010
  • This study is aimed to investigate changes of combustion characteristics and heat efficiency when syngas from gasification process using low-rank fuel such as waste and/or biomass is applied partially to an industrial boiler. An experimental study on syngas co-combustion was performed in a 0.7 MW (1 ton steam/hr) water tube boiler using heavy oil as a main fuel. Three kinds of syngas were used as an alternative fuel: mixture gas of pure carbon monoxide and hydrogen, syngas of low calorific value generated from an air-blown gasification process, and syngas of high calorific value produced from an oxygen-blown gasification process. Effects of co-combustion ratio (0~20%) for each syngas on flue gas composition were investigated through syngas injection through the nozzles installed in the side wall of the boiler and measuring $O_2$, $CO_2$, CO and NOx concentrations in the flue gas. When syngas co-combustion was applied, injected syngas was observed to be burned completely and NOx concentration was decreased because nitrogen-containing-heavy oil was partially replaced by the syngas. However, heat efficiency of the boiler was observed to be decreased due to inert compounds in the syngas and the more significant decrease was found when syngas of lower calorific value was used. However, the decrease of the efficiency was under 10% of the heat replacement by syngas.

Removal of Tar and Soot in The Syngas Produced from Gasification of Wood Chip by Using Catalytic Reformer (촉매 개질기를 이용한 우드칩 가스화 합성가스 내 타르 및 수트 제거)

  • Yoon, Sang-Jun;Son, Young-Il;Kim, Yong-Ku;Lee, Jae-Goo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.519-525
    • /
    • 2009
  • The catalytic steam reforming of woody biomass tar and soot to convert a synthetic gas containing hydrogen was investigated by using a bench-scale biomass gasification system. One commercial nickel-based catalyst, Katalco 46-6Q, and two different kinds of natural minerals, dolomite and olivine, were tested as a reforming catalyst at various reforming temperatures. The reaction characteristics of woody biomass tar were also investigated by TGA at a variety of heating rates. With all three catalysts conversion efficiency of tar and soot increased at increasing temperature. The reforming of tar and soot in the synthetic gas induce the increase of combustible gases such as $H_2$, CO and $CH_4$ in the product gas. The nickel-based catalyst showed a higher tar and soot conversion efficiency than mineral catalysts under the same temperature conditions.

Gasification Characteristics of Biomass and RPF in a 5ton/day Fixed Bed Gasifier (5톤/일 고정층 가스화기를 이용한 바이오매스, RPF 가스화 특성 연구)

  • Yoon, Sang-Jun;Choi, Young-Chan;Lee, See-Hoon;Kim, Jae-Ho;Lee, Jae-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.75-78
    • /
    • 2006
  • With the increasing environmental consideration and stricter regulations waste gasification is considered to be more attractive technology than conventional incineration for energy recovery as well as material recycling. The experiment for combustible waste was performed In the fixed bed gasifier to investigate the gasification behavior with the operating conditions in a 5ton/day fixed bed gasifier The experiments of operation with 10-50 hours were carried out to determine the effects of bed temperature and oxygen/waste rat io on the syngas composition, calorific value and carbon conversion. The calorific values of the produced syngas decreased with an Increase of bed temperature because combust ion reaet ion more act ively happened. The syngas composition of wood waste gasification is CO: 34.4%, $H_2: 10.7%,\;CH_4: 6.0%,\;CO_2: 48.9%$ and that of RPF is CO: 33.9%, $H_2: 26.1%,\;CH_4: 10.7%,\;CO_2: 29.2%$. The average calorific values of produced gas were about $1,933kcal/Nm^3,\;2,863kcal/Nm^3$, respectively

  • PDF