• Title/Summary/Keyword: Biomass Plant

Search Result 882, Processing Time 0.028 seconds

On the Measurement of Biomass and the Productivity of the Cultivated Mulberry Plants (뽕나무의 현존량추정법과 생산력에 대한 연구)

  • 김준호
    • Journal of Plant Biology
    • /
    • v.18 no.3
    • /
    • pp.122-128
    • /
    • 1975
  • With the cultivated mulberry plant which feeds silkworm on its leaves in sericulture, the measuring methods of biomass of terrestrial organs were compared and the annual net productivity was estimated. The measurement of the standing crops by means of allometric method on basis of relation between the parameter D230H, square of the diameter of the branch on 30cm high above ground($D{\frac}{2}{30}$) multiplied by its height(H), and the amount of leaves(WL) or of branch (Ws) was more accurate than other methods on basis of correlation between a character of the branch such as H, D30 or D230 and WL or Ws. The estimate of value of the net productivity of terrestrial parts of mulberry was 9.06-12.54 ton/ha.year, which was similar to that obtained from secondary forests in cool temperate zone.

  • PDF

Seasonal changes of nitrogen fixation and growth characteristics of kummerowia striata(thunb)schindl. populations (매듭풀 ( Kummerowia striata ( Thunb. ) Schindl. ) 개체군의 질소고정활성과 생육특성의 계절변화)

  • Song, Seung-Dal;Bae, Sang-Mee
    • The Korean Journal of Ecology
    • /
    • v.15 no.4
    • /
    • pp.377-386
    • /
    • 1992
  • Seasonal changes of symbiotic nitrogen-fixation activity and growth characteristics of four different natural populations of kummerowia striata were quantitatively analyzed during the growing period. the nitrogen-fixation activity of root nodules attained the maximum rates of 148, 132, 102 and 100$\muM\;C_2H_4\;\cdot\;g\;fw\;nodule^{-1}\;\cdot\;hr^{-1}$, respectively for sunny, multibranched, shade and unibranched populations at the optimum growth conditions. and the seasonal changes showed fluctuations by environmental conditions such as light, temperature, nutrient contents, water stress and plant ages, etc. The multibranched plant showed the greater amount of leaf and root nodule biomass, and the higher nitrogenase activity than the unibranched plant. the optimum conditions of leaf chloropht11 and water content of each organ indicated the active growth and the maximum fresh biomass of 4 different populations were 1.92, 1.85, 0.97 and 0.56 g $fw\cdotplant^{-1}$ for shade multibranched, sunny and unibranched populations, respectively.

  • PDF

Biomass and Molecular Characteristics of Multi-tillering Miscanthus Mutants

  • Lee, Geung-Joo;Zhang, Lili;Choi, Young In;Chung, Sung Jin;Yoo, Yong Kweon;Kim, Dong Sub;Kim, Sang Hoon
    • Korean Journal of Plant Resources
    • /
    • v.25 no.6
    • /
    • pp.745-752
    • /
    • 2012
  • Compared to wide ranges of genetic variation of natural populations, very limited Miscanthus cultivar has been released. This study was the first report on the development of Miscanthus cultivar by means of radiation breeding. Seeds of M. sinensis were initially exposed to gamma rays of 250 Gy for 24 h, generated from a $^{60}Co$ gamma-irradiator. The irradiated seeds were sown and then the highly tiller-producing mutants were selected for this study. Biomass-related parameters including tiller number, plant height, stem diameter, and leaf number were measured. Ploidy level and internal transcribed spacer (ITS) were investigated to characterize the mutants compared to wild type (WT) Miscanthus. Plant height and tiller number were negatively related, where multi-tillering mutants were relatively short after 4 month growth. However stem diameter and leaf number were greater in mutants. All the materials used in this study were diploid, implying that the mutants with greater tiller numbers and stem diameter were not likely related to polyploidization. Based on the sequence of ITS regions, the mutants demonstrated base changes from the gamma irradiation where G+C content (%) was decreased in the ITS1, but increased in ITS2 when compared to WT sequence. ITS2 region was more variable than in ITS1 in the mutants, which collectively allows identification of the mutants from WT. Those mutants having enhanced tillers and allelic variations might be used as breeding materials for enhanced biomass-producing Miscanthus cultivars.

Improvement of cadmium tolerance and accumulation of Phragmites spp. Tabarka by ethyl methane sulfonate mutagenesis

  • Kim, Young-Nam;Kim, Jiseong;Lee, Jeongeun;Kim, Sujung;Lee, Keum-Ah;Kim, Sun-Hyung
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.324-329
    • /
    • 2020
  • Reed (Phragmites spp.) is a rhizomatous plant of the Poaceae family and is known as high tolerant plant to heavy metal contaminants. This plant is widely recognized as a Cd root-accumulator, but improved heavy metal tolerance and uptake capacity are still required for phytoremediation efficiency. To enhance capacity of hyperaccumulator plants, ethyl methane sulfonate (EMS) as chemical mutagen has been introduced and applied to remediation approaches. This study aimed to select EMS-mutagenized reeds representing high Cd resistance and large biomass and to investigate their ability of Cd accumulation. After 6 months cultivation of M2 mutant reeds under Cd stress conditions (up to 1,500 µM), we discovered seven mutant individuals that showed good performances like survivorship, vitality, and high accumulation of Cd, particularly in their roots. Compared to wild type (WT) reeds as control, on average, dry weight of mutant type (MT) reeds was larger by 2 and 1.5 times in roots and shoots, respectively. In addition, these mutant plants accumulated 6 times more Cd, mostly in the roots. In particular, MT8 reeds showed the greatest ability to accumulate Cd. These results suggest that EMS mutagenesis could generate hyperaccumulator plants with enhanced Cd tolerance and biomass, thereby contributing to improvement of phytoremediation efficiency in Cd-contaminated soil or wastewater. Further studies should focus on identifying Cd tolerance mechanisms of such EMS-mutagenized plants, developing techniques for its biomass production, and investigating the practical potential of the EMS mutants for phytoremediation.

Microwave-assisted extraction of paclitaxel from plant cell cultures (Microwave를 이용한 식물세포배양으로부터 paclitaxel 추출)

  • Hyun, Jung-Eun;Kim, Jin-Hyun
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.281-284
    • /
    • 2008
  • A simple and efficient microwave-assisted extraction procedure was developed and optimized for the extraction of paclitaxel from the plant cell cultures of Taxus chinensis. The biomass, immersed in a methanol-water mixture, was irradiated with microwaves in a closed-vessel system. The microwave-assisted extraction was compared with the existing conventional solvent extraction in terms of yield, extraction time, and solvent consumption. The use of microwave energy allows rapid recovery of paclitaxel from biomass and dramatically reduces extraction time and solvent usage compared to conventional solvent extraction. The paclitaxel was completely extracted from biomass by microwave-assisted extraction for 3 min at $50^{\circ}C$, for 6 min at $30^{\circ}C$ and $40^{\circ}C$, respectively.

Growth, Photosynthesis and Zinc Elimination Capacity of a Sorghum-Sudangrass Hybrid under Zinc Stress (고농도 아연 조건에서 수수-수단그라스 교잡종의 생장, 광합성 및 아연 제거능)

  • Oh, Soonja;Koh, Seok Chan
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1143-1153
    • /
    • 2016
  • Plant biomass, photosystem II (PSII) photochemical activity, photosynthetic function, and zinc (Zn) accumulation were investigated in a sorghum-sudangrass hybrid (Sorghum bicolor ${\times}$ S. sudanense) exposed to various Zn concentrations to determine the elimination capacity of Zn from soils. Plant growth and biomass of the sorghum-sudangrass hybrid decreased with increasing Zn concentration. Symptoms of Zn toxicity, i.e., withering and discoloration of old leaves, were found at Zn concentrations over 800 ppm. PSII photochemical activity, as indicated by the values of $F_v/F_m$ and $F_v/F_o$, decreased significantly three days after exposure to Zn concentrations of 800 ppm or more. Photosynthetic $CO_2$ fixation rate (A) was high between Zn concentrations of 100-200 ppm ($22.5{\mu}mol$ $CO_2{\cdot}m^{-2}{\cdot}s^{-1}$), but it declined as Zn concentration increased. At Zn concentrations of 800 and 1600 ppm, A was 14.1 and $1.8{\mu}mol$ $CO_2{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. The patterns of stomatal conductance ($g_s$), transpiration rate (E), and water use efficiency (WUE) were all similar to that of photosynthetic $CO_2$ fixation rate, except for dark respiration ($R_d$), which showed an opposite pattern. Zn was accumulated in both above- and below-ground parts of plants, but was more in the below-ground parts. Magnesium (Mg) and iron (Fe) concentrations were significantly low in the leaves of plants, and symptoms of Mg or Fe deficiency, such as a decrease in the SPAD value, were found when plants were treated with Zn concentrations above 800 ppm. These results suggest that the sorghum-sudangrass hybrid is able to accumulate Zn to high level in plant body and eliminate it with its rapid growth and high biomass yield.

The Study on CDM Project of Ligneous Biomass Co-fired in Coal Thermal Power Plant (석탄화력에서 목질계 바이오매스의 혼소시 CDM 사업 연구)

  • Jeong, Nam-Young;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.231-235
    • /
    • 2011
  • Ligneous biomass such as wood pellet is characterized as carbon neutral which has no carbon dioxide emission ; additionally, it can be used as an alternative fuel by co-firing without additional plant reformation as well as for maintaining stability of fuel supply. We can develop CDM project while co-firing by using biomass into conventional coal fired thermal power plant with AM0085 CDM methodology, and it's possible to prove additionality as fuel cost per kWh is higher than bituminous. The study shows that the electricity by biomass can reduce green house emission by $0.6737tCO_2$ per MWh.

Selection of Suitable Plants for Artificial Floating Islands - Comparisons of Vegetation Structure and Growth of Four Emergent Macrophytes (인공 식물섬에 적합한 식물의 선발 - 4종 정수식물의 식생구조와 생장의 비교)

  • Lee, Hyo Hye Mi;Kwon, Oh Byung;Suck, Jeong Hyun;Cho, Kang-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.57-66
    • /
    • 2001
  • The floating islands have been constructed for the water quality improvement and the biodiversity conservation in an disturbed aquatic ecosystem. We made floating islands consisted of a special float and substrates of coconut fibers implanted with four emergent macrophytes such as Phragmites australis, Zizania latifolia, Iris pseudoacorus, Typha angustifolia. Vegetation structure and plant growth were compared between on the floating islands and on ground in order to select suitable plants for the construction of floating islands. Emergent-macrophytic vegetation on the floating islands showed lower coverages and higher plant biodiversity due to natural introduction of various hydrophytes and hygrophytes. Shoot density was increased on floating islands except for Zizania latifolia. From the point of coverage and density of plants, Phragmites australis and Iris pseudoacorus were suitable for floating islands. Total biomass of emergent macrophytes was decreased on the floating islands. The belowground/aboveground biomass ratio of floating islands was higher than that of the ground. Out of planted macrophytes, Iris pseudoacorus with a high belowground/aboveground biomass ratio could be evaluated a suitable plant for the floating islands because a plenty of its root is profitable to adapt with the nutrient-limited environment of floating islands.

  • PDF

Impingement of Fish on Traveling Screens at Hadong Power Plant (하동화력발전소 취수구 스크린에 충돌사망하는 어류에 관한 연구)

  • Huh, Sung-Hoi;Choo, Hyun-Gi;Baeck, Gun Wook
    • Korean Journal of Ichthyology
    • /
    • v.18 no.3
    • /
    • pp.251-265
    • /
    • 2006
  • To investigate the impingement of fish on the traveling screens, fishes were collected from the traveling screens at Hadong Power Plant through the year of 1999. A total of 84 fish species were collected during the study period. The dominant species were Leiognathus nuchalis, Engraulis japonicus, Trichiurus lepturus and Takifugu niphobles. These four species accounted for 78.2% of the total number of individuals and 52.0% of total biomass collected. The number of fish species, number of individuals, biomass and species diversity indices fluctuated with the seasons. The number of species and biomass were high in April and August, and the number of individuals was high in April and July. However, the number of fish species, number of individuals and biomass of fishes showed low values in winter.

Comparison of Bioactive Compounds and Antioxidant Activity according to Culture Systems in Artemisia fukudo

  • Eun Bi Jang;Jong-Du Lee;Hyejin Hyeon;Yong-Hwan Jung;Weon-Jong Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.99-99
    • /
    • 2022
  • Artemisia fukudo is a biennial plant and has been reported to have anticancer, anti-melanogenesis, and anti-inflammatory effects. However, it is difficult to produce biomass from A. fukudo, so it is not used as a material for cosmetics or pharmaceuticals. In vitro culture can stably produce biomass throughout the year. In this study, the culture system for producing the highest biomass and bioactive substances was compared. Ex vitro plants were collected in Pyoseon-eup, Jeju island in May 2021, and in vitro culture was harvested after culturing for 8 weeks (plantlet) and 4 weeks (adventitious roots), respectively. After harvest, total polyphenol content (TPC), total flavonoid content (TFC), and DPPH scavenging activity were analyzed. In biomass production, adventitious roots (FW: 5.1 g·100 ml-1, DW: 0.6 g·100 ml-1) were about 4 times higher than that of plantlets (FW: 1.8 g·200 ml-1, DW: 0.3 g·200 ml-1). Both TPC and TFC were highest in ex vitro plants (9.2 ㎍·mL-1, 31.6 ㎍·mL-1), and were 3.0 times and 1.8 times higher than those of plantlets (3.0 ㎍·mL-1, 17.8 ㎍·mL-1), respectively. The IC50 value of DPPH scavenging activity was also the best in ex vitro plants (69.8 ㎍·mL-1), followed by root root (184.4 ㎍·mL-1) and plants (325.3 ㎍·mL-1) in that order. Through additional elicitor treatment, scale-up, and advanced compounds analysis such as HPLC, it can be used as an industrial material.

  • PDF