• Title/Summary/Keyword: Biomass Estimation

Search Result 264, Processing Time 0.02 seconds

Comparison of Determination Methods for Available-P in Soil of Plastic Film House (시설재배 토양의 유효인산 측정방법 비교)

  • Yang, Won-Seok;Kang, Seong-Soo;Kim, Ki-In;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.163-172
    • /
    • 2006
  • Pot experiments were conducted from 1999 to 2001 to compare the different methods of available phosphorus (P) for estimation of biomass and P uptake by tomato and cucumber grown on different soils (25 soils for tomato and 8 soils for cucumber cultivation) collected from plastic film house of Chungbuk area. Supplementary experiment was conducted to estimate the relationship among several extraction methods of available P such as P adsorption, water extractable-P, Lancaster-P, Olsen-P, Bray No 1 and No 2-P, and Mehlich 1 and 3-P for a total of 71 soils that included 33 soils collected for tomato and cucumber cultivation and 38 soils taken from other sites of plastic film house. All the extraction methods of available phosphorus except P adsorption were mutually positive correlated with r ranging from 0.81 to 0.96 while the correlation coefficient between P adsorption and other methods ranged from -0.57 to -0.80. Phosphorus uptake by tomato plant applied with no fertilizer was significantly correlated with the available P extracted by different methods except P adsorption in all the experiments showing positive correlation coefficients from 0.49 to 0.76 in April, 1999, 0.53 to 0.71 in April, 2000, and 0.59 to 0.68 in October, 2000. Consequently relative amount of P uptake by tomato plant for all the experiments also significantly correlated with available P in soils showing correlation coefficients of r=0.64~0.73 (P<0.0000001) in the order of Mehlich 1-P > Mehlich 3-P > Lancaster-P. For tomato, critical concentrations of available P in soils estimated by Cate and Nelson split method were $1700mg\;kg^{-1}$ for Mehlich 3-P, $1,050mg\;kg^{-1}$ for Mehlich 1-P, and $95mg\;kg^{-1}$ for water extractable P. Also P uptake by cucumber plant was significantly correlated with Olsen-P, water extractable P, and Bray No 2-P with r value of 0.62, 0.59, and 0.51, respectively, in soils of no fertilization.

A Practical Application and Development of Carbon Emission Factors for 4 Major Species of Warm Temperate Forest in Korea (난대지역 주요 4개 수종의 탄소배출계수 개발 및 적용)

  • Son, Yeong Mo;Kim, Rae Hyun;Kang, Jin Taek;Lee, Kwang Su;Kim, So Won
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.4
    • /
    • pp.593-598
    • /
    • 2014
  • In this study, we developed the carbon emission factors for 4 major species of warm-temperate region in Korea, and tried to provide their carbon emissions and removals estimates using these carbon emission factors. We selected Castanopsis cuspidata, Camellia japonica, Quercus acuta and Quercus glauca as target species and derived their carbon emission factors. The basic wood density that serve as one of the carbon emission factors were 0.583 for Castanopsis cuspidata, 0.657 for Camellia japonica, 0.833 for Quercus acuta and 0.763 for Quercus glauca and their uncertainties ranged from 5.3 to 17.9%. Biomass expansion factors were calculated as well: 1.386 for Castanopsis cuspidata, 2.621 for Camellia japonica, 1.701 for Quercus acuta and 2.123 for Quercus glauca and associated uncertainties varied from 14.7 to 30.5%. Lastly root-shoot ratios for each species were also determined: 0.454 for Castanopsis cuspidata, 0.356 for Camellia japonica, 0.191 for Quercus acuta and 0.299 for Quercus glauca with the uncertainties lying within a range from 19.8 to 35.7%. These three carbon emission factors including basic wood density had the uncertainties of less than 40% recommended by FAO. Therefore the application of country-specific emission factors seemed to provide quite accurate estimates of carbon emissions and removals. The estimation of the carbon stored in the 4 species were also conducted which amounted to $186.10tCO_2/ha$ for Castanopsis cuspidata, $280.63tCO_2/ha$ for Camellia japonica, $344.04tCO_2/ha$ for Quercus acuta and $278.91tCO_2/ha$ for Quercus glauca and their annual carbon removals were $6.65tCO_2/ha/yr$, $6.25tCO_2/ha/yr$, $11.70tCO_2/ha/yr$ and $12.29tCO_2/ha/yr$, respectively. This systematic assessment of forest resources can be a reliable source of information for managing evergreen broadleaved forest in warm temperate regions and thus serve as useful data for effective decision-making to address vegetation zone shifts due to climate change.

Changes in Radiation Use Efficiency of Rice Canopies under Different Nitrogen Nutrition Status (질소영양 상태에 따른 벼 군락의 광 이용효율 변화)

  • Lee Dong-Yun;Kim Min-Ho;Lee Kyu-Jong;Lee Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.190-198
    • /
    • 2006
  • Radiation use efficiency (RUE), the amount of biomass produced per unit intercepted photosynthetically active radiation (PAR), constitutes a main part of crop growth simulation models. The objective of the present study was to evaluate the variation of RUE of rice plants under various nitrogen nutritive conditions. from 1998 to 2000, shoot dry weight (DW), intercepted PAR of rice canopies, and nitrogen nutritive status were measured in various nitrogen fertilization regimes using japonica and Tongil-type varieties. These data were used for estimating the average RUEs before heading and the relationship between RUE and the nitrogen nutritive status. The canopy extinction coefficient (K) increased with the growth of rice until maximum tillering stage and maintained constant at about 0.4 from maximum tillering to heading stage, rapidly increasing again after heading stage. The DW growth revealed significant linear correlation with the cumulative PAR interception of the canopy, enabling the estimation of the average RUE before heading with the slopes of the regression lines. Average RUE tended to increase with the increased level of nitrogen fertilization. RUE increased approaching maximum as the nitrogen nutrition index (NNI) calculated by the ratio of actual shoot N concentration to the critical N concentration for the maximum growth at any growth stage and the specific leaf nitrogen $(SLN;\;g/m^2\;leaf\;area)$ increased. This relationship between RUE (g/MJ of PAR) and N nutritive status was expressed well by the following exponential functions: $$RUE=3.13\{1-exp(-4.33NNNI+1.26)\}$$ $$RUE=3.17\{1-exp(-1.33SLN+0.04)\}$$ The above equations explained, respectively, about 80% and 75% of the average RUE variation due to varying nitrogen nutritive status of rice plants. However, these equations would have some limitations if incorporated as a component model to simulate the rice growth as they are based on relationships averaged over the entire growth period before heading.

Estimation of Rice Grain Protein Contents Using Ground Optical Remote Sensors (지상광학센서를 이용한 쌀 단백질함량 예측)

  • Kim, Yi-Hyun;Hong, Suk-Young
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.551-558
    • /
    • 2008
  • It is well known that the protein content of rice grain is an indicator of taste of cooked rice in the countries where people as the staple food. Ground-based optical sensing over the crop canopy would provide information not only on the mass of plant body which reflects the light, but also on the crop nitrogen content which is closely related to the greenness of plant leaves. The vegetation index has been related to crop variables such as biomass, leaf nitrogen, plant cover, and chlorophyll in cereals. The objective of this study was to investigate the correlation between GNDVI and NDVI values, and grain protein content at different dates and to estimate the grain protein content using G(NDVI) values. We measured Green normalized difference vegetation index [$GNDVI=({\rho}0.80{\mu}m-{\rho}0.55{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.55{\mu}m)$] and [$GNDVI=({\rho}0.80{\mu}m-{\rho}0.68{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.68{\mu}m)$] by using two different active sensors. The study was conducted during the rice growing season for three years from 2005 through 2007 at the experimental plots of National Institute of Agricultural Science and Technology. The experiments were carried out by randomized complete block design with the application of four levels of nitrogen fertilizers(0, 70, 100, 130kg N/ha) and the same amount of phosphorous and potassium content of the fertilizers. After heading stage, relationships between GNDVI of rice canopy and grain protein content showed the highly positive correlation at different dates for three years. GNDVI values showed higher correlation coefficients than that of NDVI during growing season in 2005-07. The correlation between GNDVI values at different dates and grain protein contents was highly correlated at early July. We attempted to estimate the grain protein content at harvesting stage using GNDVI values from early July for three years. The determination coefficients of the linear model by GNDVI values were 0.9l and the measured and estimated grain protein content at harvesting stage using GNDVI values highly correlated($R^2=0.96^{***}$). Results from this study show that GNDVI appeared very effective to estimate leaf nitrogen and grain protein content of rice canopy.