DOI QR코드

DOI QR Code

Estimation of Rice Grain Protein Contents Using Ground Optical Remote Sensors

지상광학센서를 이용한 쌀 단백질함량 예측

  • Kim, Yi-Hyun (National Academy of Agricultural Science, Rural Development Administration) ;
  • Hong, Suk-Young (National Academy of Agricultural Science, Rural Development Administration)
  • 김이현 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 홍석영 (농촌진흥청 국립농업과학원 토양비료관리과)
  • Published : 2008.12.30

Abstract

It is well known that the protein content of rice grain is an indicator of taste of cooked rice in the countries where people as the staple food. Ground-based optical sensing over the crop canopy would provide information not only on the mass of plant body which reflects the light, but also on the crop nitrogen content which is closely related to the greenness of plant leaves. The vegetation index has been related to crop variables such as biomass, leaf nitrogen, plant cover, and chlorophyll in cereals. The objective of this study was to investigate the correlation between GNDVI and NDVI values, and grain protein content at different dates and to estimate the grain protein content using G(NDVI) values. We measured Green normalized difference vegetation index [$GNDVI=({\rho}0.80{\mu}m-{\rho}0.55{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.55{\mu}m)$] and [$GNDVI=({\rho}0.80{\mu}m-{\rho}0.68{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.68{\mu}m)$] by using two different active sensors. The study was conducted during the rice growing season for three years from 2005 through 2007 at the experimental plots of National Institute of Agricultural Science and Technology. The experiments were carried out by randomized complete block design with the application of four levels of nitrogen fertilizers(0, 70, 100, 130kg N/ha) and the same amount of phosphorous and potassium content of the fertilizers. After heading stage, relationships between GNDVI of rice canopy and grain protein content showed the highly positive correlation at different dates for three years. GNDVI values showed higher correlation coefficients than that of NDVI during growing season in 2005-07. The correlation between GNDVI values at different dates and grain protein contents was highly correlated at early July. We attempted to estimate the grain protein content at harvesting stage using GNDVI values from early July for three years. The determination coefficients of the linear model by GNDVI values were 0.9l and the measured and estimated grain protein content at harvesting stage using GNDVI values highly correlated($R^2=0.96^{***}$). Results from this study show that GNDVI appeared very effective to estimate leaf nitrogen and grain protein content of rice canopy.

본 연구에서는 광학 센서를 이용한 벼 생육단계 별 식생지수와 쌀 단백질함량의 관계를 구명하여 수확기 쌀 단백질함량을 추정하고자 하였다. 인공광원을 사용하는 능동형 광학센서인 GreenSeeker(NTech Inc., USA) GNDVI(green normalized difference vegetation index=$({\rho}0.80{\mu}m-{\rho}0.55{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.55{\mu}m)$)와 NDVI(normalized difference vegetation index=$({\rho}0.80{\mu}m-{\rho}0.68{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.68{\mu}m)$) 2종의 센서를 이용하여 벼 군락의 반사특성을 측정하고 동시에 식물체 샘플링을 통한 쌀 단백질함량을 분석하였다. 3년 동안(2005-2007년) 벼 출수 후 식생지수와 쌀 단백질함량의 관계를 조사해 본 결과 모든 시기에 걸쳐 GNDVI가 NDVI보다 상관이 높았고. 벼 수확기가 가까울수록 상관계수가 높게 나타났다. 수확기 쌀 단백질함량 예측 가능성을 알아보기 위해 벼 유수형성기와 출수기 두 시기의 GNDVI값과 수확기 쌀 단백질함량과의 관계를 분석해본 결과, 결정계수가 각각 0.91, 0.81로 특히 이삭거름 주기 전에 측정한 GNDVI를 통하여 수확기 쌀 단백질함량을 예측 할 수 있다는 결론을 얻었다. 이 결과를 바탕으로 유수형성기 GNDVI를 이용한 수확기 쌀 단백질함량 경험 모델식을 구하고 경험 모델식에서 얻어진 추정값과 실측값의 관계를 통해 검증하였다. 2005년과 2006년에서 구한 경험모델식의 쌀 단백질함량 추정값과 2007년도 쌀 단백질함량 실측값을 1:1 line에서 비교해본결과 결정계수가 높게 나타났다($R^2=0.96^{***}$).

Keywords

References

  1. 김이현, 홍석영, 이지민, 임상규, 곽한강, 2005. 광학센서를 이용한 식생지수와 쌀 단백질함량 관계. 2006 대한원격탐사학회 춘계학술대회, March 31: 193-198
  2. 김이현, 홍석영, 2006. 지상광학센서를 이용한 비파괴 벼 엽 질소함량 추정, 한국토양비료학회지, 40(6): 435-441
  3. 홍석영, 김이현, 최철웅, 이지민, 이재중, 임상규, 곽한강, 2005. 지상센서와 위성영상을 이용한 벼 군락의 엽 질소함량 추정, 2006 대한원격탐사학회 춘계학술대회, March 31: 218-223
  4. Anna, P. and B. Abdou, 2001. Application of hyperspectral remote sensing for LAI estimation in precision farming, Canadian Remote Sensing Symposium
  5. Aparicio, N., D. Villegas, J. Casadesus, J. L. Araus, and C. Royo, 2000. Spectral vegetation indices as non-destructive tools for determining durum wheat yield, Agronomy. J., 92: 83-91 https://doi.org/10.2134/agronj2000.92183x
  6. Asaka, D. and H. Shiga, 2003. Estimating rice grain protein contents with SPOT/HRV data acquired at maturing stage, Journal of The Remote Sensing Society of Japan, 23(5): 451-457
  7. Barbara, J. Y. and R. E. Pettigrew-Crosby, 1995. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra at leaf and canopy scales, Remote Sensing of Environment, 53: 199-211 https://doi.org/10.1016/0034-4257(95)00135-N
  8. Baret, F. and G. Guyot, 1991. Potentials and limits of vegetation indices for LAI and APAR assessment, Remote Sensing of Environment, 35: 161-173 https://doi.org/10.1016/0034-4257(91)90009-U
  9. Best, R. G. and J. C. Harlan, 1985. Spectral estimation of green leaf area index of oats, Remote Sensing of Environment, 17: 27-36 https://doi.org/10.1016/0034-4257(85)90110-5
  10. Christensen, S. and J. Goudriaan, 1993. Deriving light interception and biomass from spectral reflectance ratio, Remote Sensing of Environment, 43: 87-95 https://doi.org/10.1016/0034-4257(93)90066-7
  11. Hong, S. Y., K. A. Sudduth., N. A. Kitchen., C. W. Fraisse., H. L. Palm, and W. J. Wiebold, 2004. Comparison of remote sensing and crop growth models for estimating withinfield LAI variability, Korean Journal of Remote Sensing, 20: 175-188 https://doi.org/10.7780/kjrs.2004.20.3.175
  12. National Institute of Agricultural Science and Technology, 2000. Methods of soil and crop plant analysis, National Institute of Agricultural Science and Technology, RDA, Suwon, Korea
  13. Richardson, A. J. and C. L. Weigand, 1992. Using Spectral Vegetation Indices to Estimate Rangeland Productivity, Geocarto International, 1: 63-77
  14. Ryu, C. S., M. Suguri, and M. Umeda, 2005. Estimation the nitrogen contents and the rice quality using hyperspectral remote sensing technology, European Conference of Precision Agriculture 2005, pp. 325-330
  15. Scharf, P. C., J. P. Schmidt., N. P. Kitchen., K. A. Sudduth., S. Y. Hong., J. A. Lory, and J. G. Davis, 2002. Remote sensing for nitrogen management, Journal of Soil and Water Conservation, 57(6): 518-524