• Title/Summary/Keyword: Biological variable

Search Result 381, Processing Time 0.031 seconds

Contrivance of a Radial Pulse Measuring System with Variable Contact Pressure (압력 조절식 맥진 센서의 개발)

  • 윤영준;조정현;정현민;신학수;소광섭
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.5
    • /
    • pp.567-572
    • /
    • 1999
  • 혈관내 맥검출 센서인 MPX2300DT1을 요골동맥상에서 무침습적으로 맥파를 검출할 수 있도록 실리콘 고무를 부착하여 맥진 센서로 활용하였다. 또한 추의 무게에 의해 압력을 조절하여 그것에 따른 맥파의 변화를 볼 수 있는 맥진 시스템을 제작하였다. 맥진 센서의 압력에 따른 출력전압의 선형성을 확인하였으며 추의 무게에 따른 맥파의 진폭과 주기 변화를 조사하였다.

  • PDF

Seasonal Variation of Loganin from Lonicera japonica Thunb.

  • Chung , Sung-Hyun;Yim , Dong-Sool;Lee, Soo-Kyeon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.208.3-209
    • /
    • 2003
  • Lonicerae Folium et Caulis, the folium and stem of Lonicera japonica Thunb., has been used as diuretic, stomachic, antipyretic, analgesic and anti-inflammatory agent in Korea. We isolated a main iridoid, loganin which has some important biological effects from the folium and stem of this plant. Generally, it is known that iridoid compounds have variable contents by the collecting time and a part of plant. The content of main compound is important to evaluate its quality. In order to evaluate the quality of Lonicerae Folium et Caulis, the method of quantitative determination of loganin as a reference standard compound has been developed. (omitted)

  • PDF

Dominant-strains Variation of Soil Microbes by Temperate Change II (온도변화에 기인한 토양세균 우점종의 변화에 관한 연구 II)

  • Park, Kap-Joo;Lee, Byeong-Chol;Kim, Soo-Young;Park, Chan-Sun;Cho, Myung-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.195-201
    • /
    • 2011
  • Today, the weather is changing continually, due to the progress of global warming. As the weather changes, the habitats of different organisms will change as well. It cannot be predicted whether or not the weather will change with each passing day. In particular, the biological distribution of the areas climate change affects constitutes a major factor in determining the natural state of indigenous plants; additionally, plants are constantly exposed to rhizobacteria, which are bound to be sensitive to these changes. Interest has grown in the relationship between plants and rhizopheric microorganisms. As a result of this interest we elected to research and experiment further. We researched the dominant changes that occur between plants and rhizospheric organisms due to global warming. First, we used temperature as a variable. We employed four different temperatures and four different sites: room temperature ($27^{\circ}C$), $+2^{\circ}C$, $+4^{\circ}C$, and $+6^{\circ}C$. The four different sites we used were populated by the following strains: Pinus densiflora, Pinus koraiensis, Quercus acutissima. We counted colonies of these plants and divided them. Then, using 16S rRNA analysis we identified the microorganisms. In conclusion, we identified the following genera, which were as follows: 24 strains of Bacillus, 6 Paenibacillus strains, 1 Pseudomonas strains. Among these genera, the dominant strains in Pinus densiflora was discovered in the same genus. Additionally, those of Pinus koraiensis and Quercus acutissima changed in both genus and strains which changed into the Bacillus genus from the Paenibacillus genus at $33^{\circ}C$.

Novel rearrangements in the mitochondrial genomes of the Ceramiales (Rhodophyta) and evolutionary implications

  • Min Ho Seo;Shin Chan Kang;Kyeong Mi Kim;Min Seok Kwak;Jihoon Jo;Han-Gu Choi;Ga Hun Boo;Hwan Su Yoon
    • ALGAE
    • /
    • v.38 no.4
    • /
    • pp.253-264
    • /
    • 2023
  • The Ceramiales is the most diverse and species-rich group (2,669 spp.) of red algae, and it is widely distributed from tropical to polar oceans. Mitochondrial genomes (mitogenomes) and other genes have contributed to our knowledge regarding the classification and phylogeny of this diverse red algal group; however, the mitogenome architecture remains understudied. Here, we compared 42 mitogenomes, including 19 newly generated in this study, to expand our knowledge. The number of genes in mitogenome varied from 43 to 68 due to gene duplication. The mitogenome architecture was also variable, categorized into four types (A-D): type A = ancestral type with a basic composition; type B = those with inverse transpositions; type C = those with inverted duplications; and type D = those with both inversion and duplication. The palindromic and inverted repeats were consistently found in flanking regions of the rearrangement, especially near the cob and nad6 genes. The three rearranged mitogenome architectures (types B, C, D) are the first report of these in red algae. Phylogenetic analyses of 23 protein-coding genes supported the current familial classification of the Ceramiales, implying that the diversity of mitogenome architecture preceded the phylogenetic relationships. Our study suggests that palindromic and inverted repeats may drive mitogenome architectural variation.

Sex Ratio Determination by Quantitative Real Time PCR using Amelogenin Gene in Porcine Sperm

  • Hwang, You-Jin;Bae, Mun-Sook;Yang, Jae-Hun;Kim, Bo-Kyoung;Kim, Sang-Ok;Lee, Eun-Soo;Choi, Sun-Gyu;Kwon, Ye-Ri;Seo, Min-Hae;Park, Choon-Keun;Kim, Dae-Young
    • Journal of Embryo Transfer
    • /
    • v.24 no.3
    • /
    • pp.225-230
    • /
    • 2009
  • Sex-sorting of sperm is an assisted reproductive technology (ART) used by the livestock industry for the mass production of animals of a desired sex. The standard method for sorting sperm is the detection of DNA content differences between X and Y chromosome-bearing sperm by flow cytometry. However, this method has variable efficiency and therefore requires verification by a second method. We have developed a sex determination method based on quantitative real-time polymerase chain reaction (qPCR) of the porcine amelogenin (AMEL) gene. The AMEL gene is present on both the X and the Y chromosome, but the length and sequence of its noncoding regions differ between the X and Y chromosomes. By measuring the threshold cycle (Ct) of qPCR, we were able to calculate the relative frequency of X chromosome. Two sets of AMEL primers were used in these studies. One set (AME) targeted AMEL gene sequences present in both X and Y chromosome, but produced PCR products of different lengths for each chromosome. The other set (AXR) bound to AMEL gene sequences present on the X chromosome but absent esholthe Y-chromosome. Relative product levels were calculated by normalizing the AXR fluorescence to the AME fluorescence. The AMEL method accurately predicted the sex ratios of boar sperm, demonstrating that it has potential value as a sex determination method.

Control of Hot Spots in Plug Flow Reactors Using Constant-temperature Coolant (등온 냉각액을 활용한 plug flow reactor 내의 과열점 제어를 위한 제어모델 개발)

  • Rhyu, Jinwook;Kim, Yeonsoo;Lee, Jong Min
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.77-84
    • /
    • 2021
  • To control hot spot in a plug flow reactor (PFR) is important for the yield and purity of products and safety. In this paper, coolant temperature is set as a state variable, and radial distributions of heat and mass are considered to model the PFR more realistic than without considering radial distributions. The model consists of three state variables, reactant concentration, reactant temperature, and the coolant temperature. The flow rate of the isothermal coolant is a manipulated variable. This paper shows that the controller considering the radial distributions of heat and mass is more effective than the controller without them. Assuming that u3,0 is 0.7, the suggested control equation was robust when St is bigger than 1.3, and Ac/A is smaller than 2.0. Under this condition, the hot spot temperature changed within the relative error of one percent when the temperature of input altered within the range of five percent.

Osmoprotective Effect of Glycine Betaine on Foreign Protein Production in Hyperosmotic Recombinant Chinese Hamster Ovary Cell Cultures Differs among Cell Lines

  • Ryu, Jun-Su;Kim, Tae-Gyeong;Jeong, Ju-Yeong;Lee, Gyun-Min
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.313-316
    • /
    • 2000
  • When 3 recombinant Chinese hamster ovary (rCHO) cell lines, CHO/dhfr-B-22-4, $CS13-1.00^{\ast}$ and $CSl3-0.02^{\ast}$, were cultivated in hyperosmolar media resulting from NaCl addition, their specific foreign protein productivity increased with medium osmolality. Glycine betaine was found to have a strong osmoprotective effect on all 3 rCHO cell lines. Inclusion of 15 mM glycine betaine in hyperosmolar medim enabled rCHO cell lines to grow at 557-573 mOsm/kg where they could not grow in the absence of glycine betaine. However, effect of glycine betaine inclusion in hyperomolar medium on foreign protein production differed among rCHO cell lines. CHO/dhfr-B22-4 cells retained enhanced specific human thrombopoietin (hTPO) productivity in the presence of glycine betaine, and thereby, the maximum hTPO titer obtained at 573 mOsm/kg was increased by 72% over that obtained in the control culture with physiological osmolality (292 mOsm/kg). On the other hand, enhanced specific antibody productivity of $CSl3-1.00^{\ast}$ and $CSl3-0.02^{\ast}$ at elevated osmolality decreased significantly in the presence of glycine betaine at a cost of the recovery of cell growth. As a result, the maximum antibody titer at 557 mOsm/kg was similar to that obtained in the control culture with physiological osmolality. Taken together, efficacy of the simultanous use of hyperosmotic pressure and glycine betaine as a means to improve foreign protein production was variable among different rCHO cell lines.

  • PDF

Spatial Physicochemical and Metagenomic Analysis of Desert Environment

  • Sivakala, Kunjukrishnan Kamalakshi;Jose, Polpass Arul;Anandham, Rangasamy;Thinesh, Thangathurai;Jebakumar, Solomon Robinson David;Samaddar, Sandipan;Chatterjee, Poulami;Sivakumar, Natesan;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1517-1526
    • /
    • 2018
  • Investigating bacterial diversity and its metabolic capabilities is crucial for interpreting the ecological patterns in a desert environment and assessing the presence of exploitable microbial resources. In this study, we evaluated the spatial heterogeneity of physicochemical parameters, soil bacterial diversity and metabolic adaptation at meter scale. Soil samples were collected from two quadrats of a desert (Thar Desert, India) with a hot, arid climate, very little rainfall and extreme temperatures. Analysis of physico-chemical parameters and subsequent variance analysis (p-values < 0.05) revealed that sulfate, potassium and magnesium ions were the most variable between the quadrats. Microbial diversity of the two quadrats was studied using Illumina bar-coded sequencing by targeting V3-V4 regions of 16S rDNA. As for the results, 702504 high-quality sequence reads, assigned to 173 operational taxonomic units (OTUs) at species level, were examined. The most abundant phyla in both quadrats were Actinobacteria (38.72%), Proteobacteria (32.94%), and Acidobacteria (9.24%). At genus level, Gaiella represented highest prevalence, followed by Streptomyces, Solirubrobacter, Aciditerrimonas, Geminicoccus, Geodermatophilus, Microvirga, and Rubrobacter. Between the quadrats, significant difference (p-values < 0.05) was found in the abundance of Aciditerrimonas, Geodermatophilus, Geminicoccus, Ilumatobacter, Marmoricola, Nakamurella, and Solirubrobacter. Metabolic functional mapping revealed diverse biological activities, and was significantly correlated with physicochemical parameters. The results revealed spatial variation of ions, microbial abundance and functional attributes in the studied quadrats, and patchy nature in local scale. Interestingly, abundance of the biotechnologically important phylum Actinobacteria, with large proposition of unclassified species in the desert, suggested that this arid environment is a promising site for bioprospection.

Quantitative structure-activity relationship of N-substituted phenyl 5-chloro-1,3-dimethylpyrazol-4-carboxamides (N-치환 phenyl 5-chloro-1,3-dimethylpyrazole-4-carboxamide의 정량적구조활성상관관계)

  • Kim, Yong-Whan;Park, Chang-Kyu
    • Applied Biological Chemistry
    • /
    • v.35 no.5
    • /
    • pp.382-388
    • /
    • 1992
  • Mycelial growth inhibition activity of forty-one N-substituted phenyl 5-chloro-1,3-dimethylpyrazole-4-carboxamides against Rhizoctonia solani was analysed quantitatively by multiple regression analysis using physicochemical parameters of substituents as independent variables and $pEC_{50}$ as dependent variable. As a result, a quantitative structure-activity relationship was formulated using eight physicochemical parameters, which explains 83% of variance of the fungicidal activity. The most important parameter for the biological activity was log k', as related to the penetration and transport processes in the biological system. The activity also correlated with other hydrophobic parameters$({\pi}_2,\;{\pi}_3)$, an electronic parameter$({\Sigma}{\sigma})$, and steric parameters$(STERIMOL\;parameters\;L_3,\;L_4)$.

  • PDF

Annual and spatial variabilities in the acorn production of Quercus mongolica

  • Noh, Jaesang;Kim, Youngjin;Lee, Jongsung;Cho, Soyeon;Choung, Yeonsook
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.229-240
    • /
    • 2020
  • Background: Genus Quercus is a successful group that has occupied the largest area of forest around the world including South Korea. The acorns are an important food source for both wild animals and humans. Although the reproductive characteristics of this genus are highly variable, it had been rarely studied in South Korea. Therefore, in Seoraksan and Odaesan National Parks (i) we measured the acorn production of Quercus mongolica, an overwhelmingly dominant species in South Korea, for 3 years (2017-2019), (ii) evaluated the spatial-temporal variation of acorn production, and (iii) analyzed the effects of oak- and site-related variables on the acorn production. Results: The annual acorn production of Q. mongolica increased 36 times from 1.2 g m-2 in 2017 to 43.2 g m-2 in 2018, and decreased to 16.7 g m-2 in 2019, resulting in an annual coefficient of variation of 104%. The coefficient of spatial variation was high and reached a maximum of 142%, and the tree size was the greatest influencing factor. That is, with an increase in tree size, acorn production increased significantly (2018 F = 16.3, p < 0.001; 2019 F = 8.2, p < 0.01). Elevation and slope also significantly affected the production in 2019. However, since elevation and tree size showed a positive correlation (r = 0.517, p < 0.001), the increase in acorn production with increasing elevation was possibly due to the effect of tree size. The acorn production of Odaesan for 3 years was 2.2 times greater than that of Seoraksan. This was presumed that there are more distribution of thick oak trees and more favorable site conditions such as deep soil A-layer depth, high organic matter, and slower slopes. Conclusion: As reported for other species of the genus Quercus, the acorn production of Q. mongolica showed large spatial and annual variations. The temporal variability was presumed to be a weather-influenced masting, while the spatial variability was mainly caused by oak tree size.