• 제목/요약/키워드: Biological systems

검색결과 2,229건 처리시간 0.029초

A review on viscocapillary models of pre-metered coating flows

  • Youn, Suk-Il;Kim, Su-Yeon;Shin, Dong-Myeong;Lee, Joo-Sung;Jung, Hyun-Wook;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • 제18권4호
    • /
    • pp.209-215
    • /
    • 2006
  • Recent research results on viscocapillary models of various pre-metered coating flows such as curtain, slide, and slot coatings have been reviewed in this paper. Such one-dimensional models have been simplified from two-dimensional Navier-Stokes equations for viscous coating flows with free surfaces, using integral momentum balances and lubrication approximation. It has been found that these viscocapillary models is capable of predicting flow dynamics in various coating systems, providing the good agreement with results by 2-D models.

Identification and Expression Patterns of kif3bz during the Zebrafish Embryonic Development

  • Lee, A-Ram;Rhee, Myung-Chull
    • Animal cells and systems
    • /
    • 제13권4호
    • /
    • pp.411-418
    • /
    • 2009
  • We are reporting the identification, expression patterns, and possible biological functions of zebrafish kif3b (kif3bz) encoding 475 amino acids. Kif3Bz contains the kinesin motor domain, catalytic domain, KISc domain, and one single coiled coil domain. Phylogenetic analysis indicates that kif3bz is a highly conserved gene among the tested vertebrates. First of all, both maternal and zygotic messages of kif3bz were evenly distributed in the blastomeres at 2-cell stage. Its ubiquitous expression throughout the blastomeres continued till 40% epiboly. However, kif3bz transcripts became restricted in Kupffer's vesicle at tailbud and 6-somite stages. At 13-somite stage, kif3bz expression pattern became specific to the telencephalon, diencephalon, trigeminal placode, and somites. Such expression patterns were further intensified in the telencephalon, diencephalons, hind brain, pronephric ducts, optic vesicles, and spinal cord neurons in the 23-somite stage embryos, and last till 24 hpf. We discussed possible functions of Kif3Bz related to the vertebrate embryonic development.

Recent Progresses in the Linguistic Modeling of Biological Sequences Based on Formal Language Theory

  • Park, Hyun-Seok;Galbadrakh, Bulgan;Kim, Young-Mi
    • Genomics & Informatics
    • /
    • 제9권1호
    • /
    • pp.5-11
    • /
    • 2011
  • Treating genomes just as languages raises the possibility of producing concise generalizations about information in biological sequences. Grammars used in this way would constitute a model of underlying biological processes or structures, and that grammars may, in fact, serve as an appropriate tool for theory formation. The increasing number of biological sequences that have been yielded further highlights a growing need for developing grammatical systems in bioinformatics. The intent of this review is therefore to list some bibliographic references regarding the recent progresses in the field of grammatical modeling of biological sequences. This review will also contain some sections to briefly introduce basic knowledge about formal language theory, such as the Chomsky hierarchy, for non-experts in computational linguistics, and to provide some helpful pointers to start a deeper investigation into this field.

농업 및 생물계에서의 바이오 센서 (BIOSENSORS IN AGRICULTURAL AND BIOLOGICAL SYSTEMS)

  • Delwiche, M.J.;Jenkins, D.M.;Tang, X.;Jackson, E.S.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.I
    • /
    • pp.76-100
    • /
    • 2000
  • 바이오 센서의 본질과 기능에 관한 일반적인 논의가 간단히 제시되었다. 바이오 센서개발에 대한 주 동기는 건강관리 산업이었지만, 최근의 연구 노력은 농업 및 생물 생산시스템에서의 문제로 확산되고 있다. 우리 실험실에서 연구된 것들을 설명하기 위하여 세 가지의 바이오 센서 예와 그들의 적용에 대해 소개한다. 첫째는 젖소의 번식관리 향상을 위해 프로게스테론 호르몬을 착유할 때 측정하는 면역센서이다. 둘째는 우유에 있는 요소(尿素, urea)의 측정을 위한 효소 센서로서, 투여되는 단백질의 우유 단백질로의 전환효율을 구하기 위한 도구이며 이로 인해 젖소의 사양관리를 향상시킬 수 있다. 셋째는 신선하며 최소 가공된 야채와 과일을 씻은 물에 있는 극소량의 병원성 박테리아를 검출하기 위한 PCR(중합효소연쇄반응)을 이용한 DNA 센서이다. 농업과 농업생물공학, 식품가공 그리고 환경 모니터링에 있어서의 바이오 센서의 적용 가능성은 이제 겨우 이해되고 있다.

  • PDF

유기농 재배에서 잡초방제기술의 동향 및 전망 (Trend and Perspective of Weed Control Techniques in Organic Farming)

  • 옥환석;변종영
    • 한국잡초학회지
    • /
    • 제31권1호
    • /
    • pp.8-23
    • /
    • 2011
  • 유기농 재배에서 이용되고 있는 잡초방제 기술 및 연구 동향을 검토하고 앞으로 방향을 제시하기 위하여 화학적 방제를 배제하고 기계적 방제, 경종적 방제, 생물적 방제를 포함한 종합방제 기술에 대한 문헌을 정리하고 분석하여 유기농업에서의 새로운 잡초 관리방안을 전망하고자 하였다. 물리적 방법은 기계적 방법, 열, 광선, 전기충격, 압축공기, 로봇잡초방제기술, 그리고 경종적 방법은 멀칭, 경운, 윤작, 피복식물, 경합을 이용한 방법이 포함된다. 생물적 방제는 미생물제초제, 대량증식 생물제제, 광역 생물제제, 상호대립억제물질 등이 개발되거나 또는 이용되고 있다. 유기농재배에서 성공적인 잡초방제를 위하여 물리적 방법과 경종적 방법은 제초제 사용이 제한된 조건에서 가장 중요한 잡초방제 수단이므로 기계적, 경종적 방법을 근간으로 하고 생물적 방법이 조화롭게 보완되는 종합잡초관리방법이 요구된다. 그리고 유기농 재배에서 수익을 창출하고 적합한 장기적 잡초관리 방안을 도출하기 위하여 잡초관리 결정에 도움이 되는 모델의 개발도 필요하다.

Application of Multiple Fuzzy-Neuro Controllers of an Exoskeletal Robot for Human Elbow Motion Support

  • Kiguchi, Kazuo;Kariya, Shingo;Wantanabe, Keigo;Fukude, Toshio
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.49-55
    • /
    • 2002
  • A decrease in the birthrate and aging are progressing in Japan and several countries. In that society, it is important that physically weak persons such as elderly persons are able to take care of themselves. We have been developing exoskeletal robots for human (especially for physically weak persons) motion support. In this study, the controller controls the angular position and impedance of the exoskeltal robot system using multiple fuzzy-neuro controllers based on biological signals that reflect the human subject's intention. Skin surface electromyogram (EMG) signals and the generated wrist force by the human subject during the elbow motion have been used as input information of the controller. Since the activation level of working muscles tends to vary in accordance with the flexion angle of elbow, multiple fuzzy-neuro controllers are applied in the proposed method. The multiple fuzzy-neuro controllers are moderately switched in accordance with the elbow flexion angle. Because of the adaptation ability of the fuzzy-neuro controllers, the exoskeletal robot is flexible enough to deal with biological signal such as EMG. The experimental results show the effectiveness of the proposed controller.

Design of In-situ Self-diagnosable Smart Controller for Integrated Algae Monitoring System

  • Lee, Sung Hwa;Mariappan, Vinayagam;Won, Dong Chan;Shin, Jaekwon;Yang, Seungyoun
    • International Journal of Advanced Culture Technology
    • /
    • 제5권1호
    • /
    • pp.64-69
    • /
    • 2017
  • The rapid growth of algae occurs can induce the algae bloom when nutrients are supplied from anthropogenic sources such as fertilizer, animal waste or sewage in runoff the water currents or upwelling naturally. The algae blooms creates the human health problem in the environment as well as in the water resource managers including hypoxic dead zones and harmful toxins and pose challenges to water treatment systems. The algal blooms in the source water in water treatment systems affects the drinking water taste & odor while clogging or damaging filtration systems and putting a strain on the systems designed to remove algal toxins from the source water. This paper propose the emerging In-Situ self-diagnosable smart algae sensing device with wireless connectivity for smart remote monitoring and control. In this research, we developed the In-Site Algae diagnosable sensing device with wireless sensor network (WSN) connectivity with Optical Biological Sensor and environmental sensor to monitor the water treatment systems. The proposed system emulated in real-time on the water treatment plant and functional evaluation parameters are presented as part of the conceptual proof to the proposed research.

State-of-The-Art Factory-Style Plant Production Systems

  • Takakura, Tadashi
    • 한국생물환경조절학회:학술대회논문집
    • /
    • 한국생물환경조절학회 1996년도 국제심포지움 21세기 첨단식물생산시스템의 실용화
    • /
    • pp.1-10
    • /
    • 1996
  • Factory-style plant production systems of various kinds are the final goal of greenhouse production systems. These systems facilitate planning for constant productivity per unit area and labor under various outside weather conditions, although energy consumption is intensive. Physical environmental control in combination with biological control can replace the use of agricultural chemicals such as insecticides, herbicides and hormones to regulate plants. In this way, closed systems which do not use such agricultural chemicals are ideal for environmental conservation for the future. Nutrient components in plants can be regulafied by physical environmental control including nutrient solution control in hydroponics. Therefore, specific contents of nutrients for particular plants can be listed on the container and be used as the basis of customer choice in the future. Plant production systems can be classified into three types based on the type of lighting: natural lighting, supplemental lighting and completely artificial lighting (Plant Factory). The amount of energy consumption increases in this order, although the degree of weather effects is in the reverse order. In the addition to lighting, factory-style plant production systems consist of mechanized and automated systems for transplanting, environmental control, hydroponics, transporting within the facility, and harvesting. Space farming and development of pharmaceutical in bio-reactors are other applications of these types of plant production systems. Various kinds of state-of-art factory-style plant production systems are discussed in the present paper. These systems are, in general, rather sophisticated and mechaized, and energy consumption is intensive. Factory-style plant production is the final goal of greenhouse production systems and the possibilities for the future are infinte but not clear.

  • PDF

Seasonal variation in longitudinal connectivity for fish community in the Hotancheon from the Geum River, as assessed by environmental DNA metabarcoding

  • Hyuk Je Lee;Yu Rim Kim;Hee-kyu Choi;Seo Yeon Byeon;Soon Young Hwang;Kwang-Guk An;Seo Jin Ki;Dae-Yeul Bae
    • Journal of Ecology and Environment
    • /
    • 제48권1호
    • /
    • pp.32-48
    • /
    • 2024
  • Background: Longitudinal connectivity in river systems strongly affects biological components related to ecosystem functioning, thereby playing an important role in shaping local biodiversity and ecosystem health. Environmental DNA (eDNA)-based metabarcoding has an advantage of enabling to sensitively diagnose the presence/absence of species, becoming an efficient/effective approach for studying the community structure of ecosystems. However, little attention has been paid to eDNA-based biomonitoring for river systems, particularly for assessing the river longitudinal connectivity. In this study, by using eDNA we analyzed and compared species diversity and composition among artificial barriers to assess the longitudinal connectivity of the fish community along down-, mid- and upstream in the Hotancheon from the Geum River basin. Moreover, we investigated temporal variation in eDNA fish community structure and species diversity according to season. Results: The results of species detected between eDNA and conventional surveys revealed higher sensitivity for eDNA and 61% of species (23/38) detected in both methods. The results showed that eDNA-based fish community structure differs from down-, mid- and upstream, and species diversity decreased from down to upstream regardless of season. We found that there was generally higher species diversity at the study sites in spring (a total number of species across the sites [n] = 29) than in autumn (n = 27). Nonmetric multidimensional scaling and heatmap analyses further suggest that there was a tendency for community clusters to form in the down-, mid- and upstream, and seasonal variation in the community structure also existed for the sites. Dominant species in the Hotancheon was Rhynchocypris oxycephalus (26.07%) regardless of season, and subdominant species was Nipponocypris koreanus (16.50%) in spring and Odontobutis platycephala (15.73%) in autumn. Artificial barriers appeared to negatively affect the connectivity of some fish species of high mobility. Conclusions: This study attempts to establish a biological monitoring system by highlighting the versatility and power of eDNA metabarcoding in monitoring native fish community and further evaluating the longitudinal connectivity of river ecosystems. The results of this study suggest that eDNA can be applied to identify fish community structure and species diversity in river systems, although some shortcomings remain still need to be resolved.

Terpenes from Forests and Human Health

  • Cho, Kyoung Sang;Lim, Young-ran;Lee, Kyungho;Lee, Jaeseok;Lee, Jang Ho;Lee, Im-Soon
    • Toxicological Research
    • /
    • 제33권2호
    • /
    • pp.97-106
    • /
    • 2017
  • Forest bathing has beneficial effects on human health via showering of forest aerosols as well as physical relaxation. Terpenes that consist of multiple isoprene units are the largest class of organic compounds produced by various plants, and one of the major components of forest aerosols. Traditionally, terpene-containing plant oil has been used to treat various diseases without knowing the exact functions or the mechanisms of action of the individual bioactive compounds. This review categorizes various terpenes easily obtained from forests according to their anti-inflammatory, anti-tumorigenic, or neuroprotective activities. Moreover, potential action mechanisms of the individual terpenes and their effects on such processes, which are described in various in vivo and in vitro systems, are discussed. In conclusion, the studies that show the biological effectiveness of terpenes support the benefits of forest bathing and propose a potential use of terpenes as chemotherapeutic agents for treating various human diseases.