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Abstract
Treating genomes just as languages raises the possi-
bility of producing concise generalizations about in-
formation in biological sequences. Grammars used in 
this way would constitute a model of underlying bio-
logical processes or structures, and that grammars may, 
in fact, serve as an appropriate tool for theory 
formation. The increasing number of biological se-
quences that have been yielded further highlights a 
growing need for developing grammatical systems in 
bioinformatics. The intent of this review is therefore to 
list some bibliographic references regarding the recent 
progresses in the field of grammatical modeling of bio-
logical sequences. This review will also contain some 
sections to briefly introduce basic knowledge about for-
mal language theory, such as the Chomsky hierarchy, 
for non-experts in computational linguistics, and to pro-
vide some helpful pointers to start a deeper inves-
tigation into this field.
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Introduction
In formal language theory, a language is simply a set of 
strings of characters drawn from some alphabet, where 
the alphabet is a set of symbols. The challenge of com-
putational linguistics is to find concise ways of specify-
ing a given language L, preferably in a way that reflects 
some underlying model of the source of that language 
(Searls, 1993). For example, we can use informal de-

scriptions of the language LGENE that make use of a nat-
ural description, as follows:
  LGENE = { w ∈ {a, t, g, c}* | w begins with “atg” }

  However, simply exhaustively enumerating languages 
as below is imopssible:

  LGENE = { atg, atga, atgt, atgg, atgc, atgaa, atgtt, 
atggg, atgcc, …}

  Regular expression, a widely-used method for speci-
fying simple languages, can be used to define LGENE, in 
a more concise way, as atg(a|t|g|c)*. Alternatively, the 
same language can be defined in formal grammar rules 
(Hopcroft and Ullman, 1979), as in Fig. 1(a), and as a 
finite state automata as in Fig. 1(b).
  Formal grammar (N, T, P, S ) consists of: a finite set 
of terminal symbols (T: usually represented by lower-
case letters), a finite set of non-terminal symbols (N: 
usually represented by uppercase letters), a finite set of 
production rules with a left and a right-hand side con-
sisting of a sequence of these symbols (P), and a start 
symbol (S). Those readers requiring a more detailed in-
troduction to formal language theory and bioinformatics 
are referred to chapter 2 of the book, “Artificial in-
telligence and molecular biology” (Searls, 2002; Searls, 
2003).
  A derivation is a rewriting of a string using the rules 
of the grammar. Thus, a rule may be applied to a se-
quence of symbols by replacing an occurrence of the 
symbols on the left-hand side of the rule with those that 
appear on the right-hand side. For example, by applying 
the production rules in Fig. 1(a), the string “atgcca” can 
be derived from the non-terminal S, by applying a series 
of derivations: S → aA → atB → atgC → atgcC → 
atgccC → atgccaC → atgcca.
  The simple grammar topologies or even less ex-
pressive formalisms can be sufficient to characterize bi-
ological sequences in many cases. But they cannot 
model long-term dependencies such as contacts of ami-
no acids that are far in the sequence but close in the 
physical folding of the protein. In order to model high-
er-order structures of biological sequences, we need 
more powerful grammatical systems based on formal 
language theory, as a biological sequence can be 
thought of as a richly-expressive language for specifying 
the structures and processes of life. Searls (1988) ini-
tiated pioneering works to view biological sequences 
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Fig. 1. (a) Formal Language and 

(b) Finite State Automaton, gen-

erating the language LGENE = { w 

∈ {a, t, g, c}* | w begins with 

“atg” }. The grammar represents a 

set of finite-length sequences of 

symbols that may be constructed 

by repeatedly applying production 

rules to the start symbol S. 

Fig. 2. The Chomsky Hierarchy is a series of increasingly 

complex classes of formal languages. The simplest are reg-

ular languages, followed by context-free, context-sensitive, 

and recursively enumerable languages. 

simply as linguistic sentences (Searls, 1988). When we 
view these sequences just as strings on alphabets, a 
grammatical representation based on formal language 
theory can be applied to various problems for biological 
sequence analyses. Indeed, linguistic grammars have 
been used to model and predict multiple sequence 
alignments, transcription binding sites, RNA folding and 
secondary structures, integrons, insertion sequences, 
genes, and gene cassettes.
  The remainder of this paper introduces the Chomsky 
hierarchy (Chomsky, 1957), and surveys bioinformatics 
approaches based on regular grammars, context-free 
grammars, and context-sensitive grammars, to model 
various types of biological sequences. 

Modeling of Biological Sequences Cate-
gorized by the Chomsky Hierarchy
In Transformational Analysis (Chomsky, 1955) and 
Syntactic Structures (Chomsky, 1957), Chomsky initiated 
the theory of generative grammar and of the theory of 
formal languages as a branch of mathematical logic. 
The Chomsky hierarchy refers to a containment hier-
archy of classes of formal grammars. Fig. 2 summarizes 
each of four types of grammar.
  In increasing complexity and power, they are called 
type-3, type-2, type-1, and type-0 - each one a sub-
class of the next. Each type can be defined by a class 
of grammars, as indicated in Fig. 2. Exactly how much 
linguistic power is actually required to model biological 
sequences is one of the ultimate questions in bioin-
formatics. 
The following sections survey various approaches based 
on grammar formalisms, ordered by type-3 (regular 
grammars), type-2 (context-free grammars), and type-1 
(context-sensitive grammars) languages.

Models based on regular grammars

Regular grammars, the first level of Chomsky's hier-
archy, in Fig. 2 (Type-3 grammars), generate regular 
languages. Regular grammar is a formal grammar (N, T, 
P, S), such that all of the production rules in P are of 
one of the following forms:
  1. A → a - where A is a non-terminal in N and a is 

a terminal in T
  2. A → Ba (or A → aB) - where A and B are in N 

and a is in T
  3. A → ε - where A is in N and ε is the empty 

string.
  Regular languages can be described by regular ex-
pressions, and they are commonly used to define 
search patterns and the lexical structure of languages.
Head (Head, 1987) initiated a formal analysis of the gen-
erative power of recombinatorial behaviors in biological 
sequences. His persistent splicing languages are shown 
to coincide with a class of regular languages. Brazma, 
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Jonassen, Eidhammer, and Gilbert (Brazma et al., 1998) 
surveyed approaches and algorithms used for the auto-
matic discovery of patterns with expressive power in the 
class of regular languages. 
  An early work toward learning grammars based on 
regular expressions is the work of Yokomori (Yokomori, 
1994) on learning a special type of regular language 
called a locally testable language from positive data, 
and its application in identifying the protein α-chain re-
gion in amino acid sequences. Peris’s group used a 
grammatical approach to predict coiled-coil proteins 
(Peris et al., 2006) and transmembrane domains in pro-
teins (Peris et al., 2008).
  Actually, if we extend our scope, and consider the 
fact that most of the works on patterns (Liew et al., 
2005) can be represented by regular grammars, the 
fields of so-called motif bioinformatics belong to type-3 
grammar. Also, many of the current motif databases are 
based on the expressive power of regular grammar. To 
mention one among a few, the Prosite (Hulo et al., 
2006) and ProRule (Sigrist et al., 2005) databases, one 
of the most successful databases, define signatures of 
known families of amino acid sequences that are ex-
pressed in sub-regular expressions. 
  On the other hand, a problem faced in these kinds of 
large-scale realistic grammars is that more than one 
production rule may apply to a structure. Naturally, 
probabilistic grammars have often been used to circum-
vent these ambiguities by using a probabilistic model 
consisting of a non-probabilistic model plus some nu-
merical quantities. Among probabilistic grammars, the 
profile Hidden Markov Model, or pHMM (Eddy, 1998; 
Krogh et al., 1994) is most closely related to regular 
grammars, because an n-gram is a subsequence of n 
items from a given sequence, and language models built 
from n-grams are actually (n-1)-order Markov models. 
  Coste and Kerbellec. (2005) showed a successful ap-
plication of the classical state merging framework devel-
oped in grammatical inference, to learning automata on 
selection and ordering of similar fragments to be 
merged, and on physico-chemical property identification 
(Coste and Kerbellec., 2005). Their work offers the op-
portunity to learn more expressive topologies than those 
of pHMMs, while still benefiting from the weighting 
schemes developed for pHMM.
  Recently, Tsafnat et al. (2011) used computational 
grammar inference methods to automate LGS (Larger 
than Gene Structures) discovery (Tsafnat et al., 2011). 
The authors compared the ability of six algorithms to in-
fer LGS grammars from DNA sequences annotated with 
genes and other short sequences.
  As we have discussed, regular grammars (including 
motif bioinformatics) are the most prevalently used for-

malism in bioinformatics. Still, the limitations of regular 
grammar are that regular grammar can only model the 
primary structures of biological sequences and cannot 
explicitly model higher-order structures such as secon-
dary structures of RNAs and tertiary structures of 
proteins. In order to model higher-order structures of bi-
ological sequences, many researchers have used more 
powerful grammatical systems. 

Models based on context-free grammars

As stated in the previous section, regular grammar has 
its limitations, and the approaches based on type-3 lan-
guage have been criticized, especially by Chomskyans, 
because they lack any explicit representation of 
long-range dependency. 
  In the Chomsky hierarchy in Fig. 2, type-2 grammar, 
or context-free grammar generates context-free lan-
guage, which is more powerful than regular grammar. In 
terms of production rules, every production of a con-
text-free grammar is of the form:
  A → w
  where A is a single non-terminal symbol, w is a 
string, and the left-hand side of a production rule is al-
ways a single non-terminal symbol. 
  We can specify a simple grammar representing an 
RNA palindrome in the following way:
  S → aSu 
  S → uSa 
  S → gSc 
  S → cSg
  …
  The grammar above captures long-range dependency. 
For example, the palindrome string “aug…cau” can be 
derived from the non-terminal S, by applying a series of 
derivations: S → aSu → auSau → augScau …
  Numerous attempts have been made to solve the 
problems of modeling of families of homologous RNA 
sequences, and predicting RNA secondary structure 
prediction techniques, since computational recognition 
based on type-2 grammar has been shown to perform 
in polynomial time. 
  In the 1990’s, DCGs (definite clause grammars) 
(Pereira and Warren, 1980), a kind of logic program-
ming-based grammars, were adopted to study so-called 
“DNA linguistics” (Searls, 1993). Later, DCGs and the 
Prolog programming language were used in modeling 
gene regulation (Collado-Vides, 1992; Rosenblueth et al., 
1996), benefiting from features such as parameter-pass-
ing and arbitrary Prolog code embeddings. Basic Gene 
Grammar, an attempt to simplify the representations of 
DNA sequences, and with expressive power equivalent 
to that of DCG, has been used to model and predict 
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transcription binding sites (Leung et al., 2001).
  Nevill-Manning and Whitten (Neville-Manning and 
Whitten, 1997) initiated an attempt to produce con-
text-free grammars of biological sequences, in an auto-
matic way. Later, similar attempts have been made by 
other researchers, along this line (Apostolico and 
Lonardi, 2000; Carrascosa et al., 2011; Cherniavsky and 
Ladner, 2004; Lanctot et al., 2000), generating gram-
mars based on repeated phrases. This task can be for-
malized as the problem of finding the smallest con-
text-free grammar by recursively replacing the repeats 
by non-terminals.
  Muggleton et al. (2001) investigated whether Chom-
sky-like grammar representations are useful for learning 
cost-effective, comprehensible predictors of members of 
biological sequence families (Muggleton et al., 2001). As 
a case study, they proved that the most cost-effective, 
comprehensible multi-strategy predictor of human neu-
ropeptide precursors employ context-free grammar. 
  Like the cases for type-3 grammars, many of the at-
tempts based on type-2 grammars also used stochastic 
methods, especially to resolve difficulties that arise be-
cause longer sentences are highly ambiguous when 
processed with realistic grammars. Here, a stochastic 
context-free grammar (SCFG) can be obtained by speci-
fying a probability for each production in a context-free 
grammar. SCFGs extend context-free grammars in the 
same way that HMMs extend regular grammars. It is a 
more expressively powerful class of stochastic gram-
mars than the HMMs.
  A pioneering work was performed by Sakakibara et 
al. (1994), extending the notion of profile HMMs (Eddy, 
1998; Krogh et al., 1994) to profile SCFG. They as-
sessed the ability of trained SCFGs to perform three 
tasks: to discriminate transfer RNA (tRNA) sequences 
from nontRNA sequences, to produce multiple align-
ments, and to ascertain a secondary structure of new 
sequences. Knudsen and Hein (1999) also suggest 
SCFGs as an alternative probabilistic methodology for 
modeling RNA structure (Knudsen and Hein, 1999). 
  For representative databases based on SCFG, RFAM 
(Gardner et al., 2009; Griffiths-Jones et al., 2003) of 
modeling common non-coding RNA families by stochas-
tic context-free grammars called covariance models, can 
be cited (Eddy and Durbin, 1994).
  SCFGs have also been used for alignments of se-
quences. Pair stochastic context-free grammars (PSCFGs) 
have been studied for alignments of a pair of RNA se-
quences without any prior information about their sec-
ondary structures (Holmes and Rubin, 2002; Rivas and 
Eddy, 2001). PSCFGs are a generalization of stochastic 
context-free grammars and can generate an aligned pair 
of sequences. Later, the notion of pair HMMs defined 

on alignments of linear sequences is extended to pair 
stochastic tree automata, called Pair HMMs on Tree 
Structures (PHMMTSs) (Sakakibara, 2003), defined on 
alignments of trees. PSCFGs are used by the multiple 
structural alignment softwares such as Stemloc (Holmes, 
2005).
  In (Chuong et al., 2006), the authors used a secon-
dary structure prediction method based on conditional 
log-linear models (CLLMs), a flexible class of proba-
bilistic models that generalize upon SCFGs by using 
discriminative training and feature-rich scoring.
  Dowell and Eddy (2004) studied the tradeoffs between 
model complexity and prediction accuracy, by compar-
ing nine different small SCFGs, and concluded that 
SCFG designs have prediction accuracies near the per-
formance of free energy minimization models (Dowell 
and Eddy, 2004); still, probabilistic methods have not re-
placed free energy minimization methods as the tool of 
choice for secondary structure prediction, as the accu-
racies of the best SCFGs have yet to match those of 
the best physics-based models.
  Recently, Dyrka and Nebel (2009) a framework, based 
on the combination of stochastic context-free grammars 
related to different physico-chemical properties of amino 
acids and on genetic algorithms, which was shown to 
produce relevant protein binding site descriptors (Dyrka 
and Nebel, 2009).

Models based on context-sensitive grammars

The presence of pseudoknot secondary structures of 
noncoding RNA molecules and the presence of repeats 
of many varieties in biological sequences indicate the 
need to use more powerful grammar formalism. Model-
ing various repeat sequences, or the pseudoknot struc-
tures of RNAs is beyond the generative power of con-
text-free grammars and inevitably involves the complex-
ity of context-sensitivity. 
  Type-1 grammars (context-sensitive grammars), in Fig. 
2, generate the context-sensitive languages. Context- 
sensitive grammar is a formal grammar (N, T, P, S ) 
such that all of the production rules are of the following 
forms:
  αAβ → αγβ
  where A ∈ N , α,β ∈ (N U T)* and γ ∈ (N U T)+ 
are applied.
  Actually, the term, “context-sensitive” comes from the 
fact that a symbol can have different interpretations, de-
pending on where it appears in the input language. 
Thus, unlike context-free grammars, more than one 
symbol can appear on the left-hand side of the gram-
mars. For example, we can specify a grammar repre-
senting {antngn | n> 0} in the following way:
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1) Those readers requiring a more detailed introduction to a num-
ber of works for applications of profile HMMs to the problems 
of gene finding and promoter analyses are referred to (Durbin 
et al., 1998). Grammatical inference methods may find gramma-
tical structures hidden in biological sequences, and those read-
ers who are interested in automatic syntax acquisition or gram-
matical inferences are referred to (Coste, 2010; Sakakibara, 
2005). Those works would be worth reading further to gain a 
more comprehensive understanding of this field.

  A → aATG 
  A → aTG 
  aT → at 
  tT → tt 
  GT → TG 
  G → g
  Using the rules above, the string “aattgg” can be 
derived from the non-terminal A, by applying a series of 
derivations: A → aATG → aaTGTG → aatGTG → 
aatTGG → aattGG → aattgG → aattgg.
  A few attempts have been made to represent pseu-
doknots. Rivas and Eddy (Rivas and Eddy, 1999) sug-
gested a formal transformational grammar that avoids 
the use of general context-sensitive rules by introducing 
a small number of auxiliary symbols used to reorder the 
strings generated by otherwise context-free grammar. 
  Sometimes, special grammar formalisms, classified as 
mildly context-sensitive grammars, are used (Joshi et 
al., 1988). Uemura et al. (1999) defined two subclasses 
of tree-adjoining grammar (Joshi et al., 1975) called 
sl-tag and esl-tag, and argued that esl-tag is appro-
priate for representing RNA secondary structures includ-
ing pseudoknots (Uemura, 1999). Matsui et al. (2005) 
proposed the pair stochastic tree-adjoining grammars 
(PSTAGs) for modeling pseudoknots, showing that their 
method significantly improves the prediction accuracies 
of RNA secondary structures (Matsui et al, 2005).
  Abe and Mamitsuka (Abe and Mamitsuka, 1999) stud-
ied a more powerful class of grammar, called stochastic 
ranked node rewriting grammars, than SCFGs and ap-
plied them to the problem of secondary structure pre-
diction of proteins, concentrating on the problem of pre-
dicting β-sheet regions, to capture the parallel and an-
ti-parallel dependencies and their combinations. 
  Rivas and Eddy (2000) introduced a new class of 
grammars for deriving RNA secondary structure by a 
sequence with a single hole (Rivas and Eddy, 2000). 
The grammar is based on a number of auxiliary symbols 
used to reorder the strings. Cai, Malmberg, and Wu 
(2003) described a formal transformational grammar that 
extends context-free grammar, based on parallel com-
municating grammar systems (Cai et al., 2003). The key 
feature is the use of special non-terminal symbols that 
dictate specific rearrangements of substrings in a 
derivation. 
  Context-sensitive grammar formalisms have also been 
used to model non-coding RNAs. To model ncRNA pre-
cursors, Yoon and Vaidyanathan (2004) proposed a con-
text-sensitive HMM (CSHMM), which is an extension of 
the idea of HMMs by introducing a memory, in the form 
of a stack or a queue (Yoon and Vaidyanathen, 2004). 
Later, Agarwal et al. (2011) extended the idea slightly 
and proposed a CSHMM structure with two con-

text-sensitive states to model miRNA sequences 
(Agarwal et al., 2011).
  Patridge et al. (2009) used similarities between DNA 
and natural languages (Baquero, 2004) to develop a 
context-sensitive grammar to define cassette arrays. 
Also, Tsafnat et al. (2009) presented a method to dis-
cover higher-order DNA structures, using a con-
text-sensitive deterministic grammar (Tsafnat et al., 
2009). These grammars have been applied to the dis-
covery of gene cassettes associated with integrons.
  On the other hand, there has been an attempt to 
model RNA structures with pseudoknots, using just con-
text-free grammars by adding four building blocks of 
genus to the conventional secondary structures (Reidys 
et al., 2011). Reidys et al. (2011) used the natural topo-
logical classification of RNA structures, resulting in cor-
responding unambiguous multiple context-free gram-
mars to provide an efficient dynamic programming 
approach.

Conclusion
In this review, we tried to gather a list of published 
works, categorized by the expressive power of formal 
grammars. The lists might not be exhaustive, and there 
is a possibility that some of the works, presented here, 
could have been misclassified, because not all the works 
fall within the traditions of the Chomsky hierarchy.1)

  The genome may not be just a molecule with 
patterns. It may be a language, and an information stor-
age mechanism. Precisely constructed sequence models 
for linguistic structure can play an important role in the 
process of biological discovery itself. In this respect, 
grammatical representations have increasing importance 
in the field of bioinformatics for biological sequence 
analyses. 
  It is noteworthy that a recent comparison of the pre-
dictive power of learned grammars against an ex-
pert-developed grammar shows the possibility that an in-
ferred grammar can represent a general model that accu-
rately identifies structures without referring to prior knowl-
edge about them (Tsafnat et al., 2011). More positively, a 
linguistically modeled biological sequences may automati-
cally provide solutions for thorny biological problems and 
thus provide us a deeper understanding of genome.  
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