• Title/Summary/Keyword: Biological systems

Search Result 2,229, Processing Time 0.024 seconds

RNA Interference in C. elegans: History, Application, and Perspectives

  • Min, Kyoeng-Woo;Lee, Jun-Ho
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.99-104
    • /
    • 2007
  • RNA interference (RNAi) is the phenomenon of gene silencing by double-stranded RNA (dsRNA) at transcriptional and post-transcriptional levels in a sequence-specific manner. Reverse genetic approaches using RNA interference (RNAi) have become a major tool for biological researches since its discovery in the nematode Caenorhabditis elegans. In this review, we overview how the RNAi phenomenon was discovered and how the underlying mechanism has been elucidated. We also describe and discuss how RNAi experiments can be performed and how RNAi can be used for genetic studies.

Novel Pharmacological Treatment for Depression (새로운 우울증 치료 약물)

  • Jeong, Hee Jeong;Moon, Eunsoo
    • Korean Journal of Biological Psychiatry
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Development of various antidepressants such as monoamine oxidase inhibitors, tricyclic antidepressants, selective serotonin reuptake inhibitors, serotonin norepinephrine reuptake inhibitors, and noradrenergic and specific serotonergic antidepressant has led to a tremendous progression of pharmaceutical treatment for depression, but still there are some limitations of current antidepressants, such as treatment-resistant depression and delayed onset of antidepressants. The pathogenesis of depression is unclear because depression is a heterogeneous disease state, and the mechanisms of antidepressants remain uncertain as well. Nevertheless, in an attempt to develop novel antidepressants, some trials have been conducted based on the potential biological mechanism discovered in the numerous research results. This review will provide information about the potential novel antidepressants and the current states of clinical studies using them. In particular, some potential novel antidepressants anti-inflammatory agents, antioxidants, anticholinergics, modulators of Hypothalamic Pituitary Adrenal Axis, glutamate, and opioid systems, as well as some neuropeptides such as susbstance P, neuropeptide Y, and galanin will be discussed.

Tra2${\alpha}$ and hnRNP K might be Functional Partners of Rbm for Regulation of RNA Processes during Spermatogenesis

  • Lee, Jungmin;Kim, Euisu;Jang, Sung Key;Rhee, Kunsoo
    • Animal cells and systems
    • /
    • v.8 no.1
    • /
    • pp.65-70
    • /
    • 2004
  • Rbm is a male infertility gene located in the AZFb region of the Y chromosome. Expression pattern of Rbm indicates that Rbm is critical for early phase of male germ cell development. It shares strong structural homology with hnRNP G, suggesting a function as an RNA processing factor. In order to gain a clue on the molecular mechanisms of Rbm on male germ cell development, we examined interactions of Rbm with selected proteins in yeast. The results revealed specific interactions between Rbm, hnRNP K and Tra2${\alpha}$. These results suggest that hnRNP K and Tra2${\alpha}$ may be functional partners of Rbm in male germ cells. We propose a model in which hnRNP K may playa role as a platform for Rbm and Tra2${\alpha}$.

Effects of Bio-stimulant Addition on Biological Wastewater Treatment Processes (생물학적 하·폐수처리 공정에서 생물촉진제 첨가의 영향)

  • Lee, Seockheon;Jung, Jin Young;Park, Ki Young
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.398-402
    • /
    • 2005
  • The enzyme Xeronine was investigated as a microbial activating substance in biological wastewater treatment processes. Xeronine as bio-stimulant was injected in the anaerobic sludge and the activated sludge treating wastewater in order to examine the effect of hidden benefits. Bio-stimulant did not show significant improvement of anaerobic treatablity. In the aerobic system, higher bio-stimulant dose condition resulted in slightly more removal of nitrogen and phosphorus. Floc aggregation and zone settling velocity as solid-liquid separation factors in activated sludge systems was enhanced by bio-stimulant. Effects of bio-stimulants injection on improvement of water quality and microbial activity did not clear in terms of normal operation conditions.

Analysis and effectiveness of biological thin Layer (Schmutzdecke) on the sand surface in slow sand filtration processes (완속여과 공정에서 표층 생물막 생성 및 제어와 원인조류 규명)

  • Kim, Seong-Su;Park, No-Suk;Kim, Chung-Hwan;Park, Jong-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.289-298
    • /
    • 2008
  • Because of their simplicity, efficiency, and economy, slow sand filters are appropriate means of water treatment for small water systems. Biological activity within the sand bed have the strongest influence on removal efficiency of pollutants by slow sand filtration. This report investigated the microorganisms(algae) of slow sand filtration pilot plant at Y water treatment plant. Data were collected at inflow and slow sand filtration from May to October, 2007. The results indicated that the light exposure was influenced on microorganism in slow sand filtration according to the formation of algal biofilm. The relative contribution of biomass and accumulated particulates to head loss development in slow sand filters requires further study.

Recent advances in microfluidic technologies for biochemistry and molecular biology

  • Cho, Soong-Won;Kang, Dong-Ku;Choo, Jae-Bum;Demllo, Andrew J.;Chang, Soo-Ik
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.705-712
    • /
    • 2011
  • Advances in the fields of proteomics and genomics have necessitated the development of high-throughput screening methods (HTS) for the systematic transformation of large amounts of biological/chemical data into an organized database of knowledge. Microfluidic systems are ideally suited for high-throughput biochemical experimentation since they offer high analytical throughput, consume minute quantities of expensive biological reagents, exhibit superior sensitivity and functionality compared to traditional micro-array techniques and can be integrated within complex experimental work flows. A range of basic biochemical and molecular biological operations have been transferred to chip-based microfluidic formats over the last decade, including gene sequencing, emulsion PCR, immunoassays, electrophoresis, cell-based assays, expression cloning and macromolecule blotting. In this review, we highlight some of the recent advances in the application of microfluidics to biochemistry and molecular biology.

Production of Cyclodextrin Homologues Using Aqueous Two-Phase System

  • Chang, Woo-Jin;Koo, Yoon-Mo;Park, Sung-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.97-100
    • /
    • 1997
  • Cyclodxtrin homologues(CDs), produced by cyclodextrin glycosyltransferase(CGTase), were simultaneously partitioned in aqueous two-phase system(ATPS). Partition coefficients of CDs were measured in PEG/dextran systems. Phosphate, citrate, sulfate were tested as salt. ATPS of PEG/salt and PEG/dextran had the partition coefficients of the CDs, larger than unity. However, PEG/dextran system was observed better than PEG/salt as CGTase activity decreased sharply with salt concentration. Enzymatic rection occurred mainly in PEG-rich bottom phase because of the low partition coefficient of CGTase. The resulting CDs transferred to the PEG-rich top phase, obeying the diffusional partition. In the ATPS of 7% PEG(M.W.40, 000), 7mg/ml of CDs were obtained in top phase at 4.5 hours.

  • PDF

Biological Decolorization Characteristics of Dyeing Wastewater (염색폐수의 생물학적 색도제거 연구)

  • Kim, Mee-Kyung;Seo, Sang-Jun;Shin, Eung-Bai
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.333-341
    • /
    • 2006
  • The concept for the decolorization in biological dye wastewater treatment systems is based on anaerobic treatment, for the reductive cleavage of the dyes' azo linkages, in combination with aerobic treatment, for the degradation of the products from azo dye cleavage, aromatic amines. Batch tests were conducted to examine the conditions and the factors affecting biological treatment of dye wastewater. From the tests, the removal efficiencies of organics and colors of dyeing wastewater were improved to $COD_{Cr}$ 27% and color 9% by injecting 10% of the domestic wastewater as a cosubstrate, and $COD_{Cr}$ 30%, color 22% with 30% injection of domestic wastewater. Therefore it was proved that decolorization efficiency is demonstrated with domestic wastewater as a cosubstrate. The analysis of aromatic amines in wastewater showed that decolorization was achieved by cometabolism while aromatic amines were produced by cleavage of azo bonds under anaerobic conditions and these products were removed in an aerobic tank subsequently.

Countermeasure system and Construction Method against CBR Terrorism (화생방 테러에 대한 대응체계 구축방안)

  • Park, Ok-cheol;Kim, Tae-hwan
    • Journal of the Society of Disaster Information
    • /
    • v.6 no.2
    • /
    • pp.21-44
    • /
    • 2010
  • Today, in response to chemical, biological and radiological terrorism has been active for the study. However, if chemical, biological and radiological attack has occurred to respond to the agency has not conducted the research. The purpose of this study are as follows. First, South Korea and the United States 'CBR terrorism' comparative analysis of the response system. Second, South Korea 'CBR terrorism' measures to improve the system response is presented. To achieve the purpose of this study, the following research is carried out. First, determine the status of the case of CBR incident. Second, the United States 'CBR terrorism' response systems and organizational approaches. Third, Korea's 'CBR terrorism' response system and the problem is derived.

DESIGN OF A CHECK VALVE FOR FEEDING BIOLOGICAL CELLS ONE BY ONE (세포의 개별 공급을 위한 체크 밸브의 설계)

  • Choi, Jung-Hoon;Lee, Sang-Wook;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.85-87
    • /
    • 1994
  • Feeding biological cells one by one is the key point in the manipulation of cells. The conventional valve systems have many difficulties in feeding cells one by one, because they shut the whole flow of fluids when they are closed and have possibilities of breaking the fragile cells. They need some other equipments for continuous supply of suspension and to protect the cells. We design a check valve for feeding biological cells one by one using polyimide all the silicon substrate. The cells are fed by hydraulic pressure through the isotropically etched cavity. When the suspension flows continuously along the channel the valve is bent by hydraulic pressure and a cell is fed to the outlet. We have studied a cell fusion device fabricated with polyimide and electroplating. If the designed check valve is located in front of the cell fusion device it is helpful to fuse two different kinds of cells.

  • PDF