• Title/Summary/Keyword: Biological screening

Search Result 746, Processing Time 0.029 seconds

Quantitative Screening of Insect Cell Transformants Stably Expressing $GFP_{uv}-{\beta}1$, 3-N-acetylglucosaminyltransferase 2 Fusion Protein

  • Deo Vipin Kumar;Kato Tatsuya;Asari Naoko;Park Enoch Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.275-279
    • /
    • 2005
  • Insect cell transformants, stably expressing human $GFP_{uv}-{\beta}1$, 3-N-acetylglucosaminyltransferase 2 $({\beta}3GnT2)$ as the green fluorescent protein $(GFP_{uv})-fused$ protein, were efficiently isolated on Western blot by the quantification of the densitometric intensity of the fusion protein. From almost 150 transformants containing the fusion gene linked to three different types of signal sequence, two transformants, Tn-pXme4a and -pX28a, were successfully selected, showing 8.3 and 8.6 mU/mL ${\beta}3GnT$ activity, respectively. This method requires a screening time almost one-half that required in the isolation of stably transformed cells with high expression levels, and at the same time allows the handling a large number of transformants.

Development of PCR-Based Screening Methods for Macrolide Type Polyketides in Actinomycetes

  • Hyun, Chang-Gu;Suh, Joo-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.119-124
    • /
    • 1999
  • About two thirds of the naturally occurring antibiotics have been discovered from actinomycetes. Therefore, the probability of discovering further new antibiotics from actinomycetes is declining as many known metabolites are isolated repeatedly. However, various efforts leave been made in order to enhance the probability of discovering novel compounds. In the present study, we have developed new screening strategies based on the antibiotic biosynthetic pathway, and the genetic information, utilizing polymerase chain reaction. We have selected macrolide type polyketides. In order to divide the ansamycin group antibotic of macrolide type polyketides, we have selected 3-amino-5-hydroxybenzoic acid (AHBA) moiety which contains a biosynthetically unique structural element in the group as a target molecules. Oligonucleotide primers were designed to amplify DNA fragments of macrolide type polyketide synthase and AHBA synthase genes from fourteen actinomycetes species. This method was successfully applied to all three of the known macrolide type polyketide produccing actinomycetes tested. In addition, it also identified the presence of potential macrolide type polyketide producing genes from seven actinomycetes that were known to produce none of macrolide type polyketides, and AHBA biosynthetic genes in one actinomycetes. This technique is potentially useful for the screening of new antibiotices and cloning of their biosynthetic genes.

  • PDF

Cell-Based Assay Design for High-Content Screening of Drug Candidates

  • Nierode, Gregory;Kwon, Paul S.;Dordick, Jonathan S.;Kwon, Seok-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.213-225
    • /
    • 2016
  • To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as high-content screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner.

Repeated Random Mutagenesis of ${\alpha}$-Amylase from Bacillus licheniformis for Improved pH Performance

  • Priyadharshini, Ramachandran;Manoharan, Shankar;Hemalatha, Devaraj;Gunasekaran, Paramasamy
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1696-1701
    • /
    • 2010
  • The ${\alpha}$-amylases activity was improved by random mutagenesis and screening. A region comprising residues from the position 34-281 was randomly mutated in B. licheniformis ${\alpha}$-amylase (AmyL), and the library with mutations ranging from low, medium, and high frequencies was generated. The library was screened using an effective liquid-phase screening method to isolate mutants with an altered pH profile. The sequencing of improved variants indicated 2-5 amino acid changes. Among them, mutant TP8H5 showed an altered pH profile as compared with that of wild type. The sequencing of variant TP8H5 indicated 2 amino acid changes, Ile157Ser and Trp193Arg, which were located in the solvent accessible flexible loop region in domain B.

Screening of cDNAs Encoding Secreted and Membrane Proteins in the Nervous System of Marine Snail Aplysia kurodai

  • Kim, Min-Jeong;Chang, Deok-Jin;Lim, Chae-Seok;Park, Woo-Jin;Kaang, Bong-Kiun
    • Animal cells and systems
    • /
    • v.7 no.2
    • /
    • pp.133-137
    • /
    • 2003
  • Secreted proteins and membrane proteins play key roles in the formation, differentiation, and maintenance of multicellular organisms. In this study, we undertook to characterize these protein types in the central nervous system of the marine snail Aplysia kurodai using a yeast-based signal sequence trap method. One hundred and three cDNA clones were obtained by screening 300,000 clones from the signal sequence trap cDNA library. Of these, twelve were identical to previously identified Aplysia genes, 19 were related to known proteins in other organisms, and 54 clones were novel. These 54 new genes had high signal peptide scores or were found likely to contain a transmembrane domain sequence. Only 18 of the 103 clones proved to be false positive. The study demonstrates that the signal sequence trap method is an effective tool for Isolating Aplysia genes encoding secreted and membrane proteins.

Metabolomics, a New Promising Technology for Toxicological Research

  • Kim, Kyu-Bong;Lee, Byung-Mu
    • Toxicological Research
    • /
    • v.25 no.2
    • /
    • pp.59-69
    • /
    • 2009
  • Metabolomics which deals with the biological metabolite profile produced in the body and its relation to disease state is a relatively recent research area for drug discovery and biological sciences including toxicology and pharmacology. Metabolomics, based on analytical method and multivariate analysis, has been considered a promising technology because of its advantage over other toxicogenomic and toxicoproteomic approaches. The application of metabolomics includes the development of biomarkers associated with the pathogenesis of various diseases, alternative toxicity tests, high-throughput screening (HTS), and risk assessment, allowing the simultaneous acquisition of multiple biochemical parameters in biological samples. The metabolic profile of urine, in particular, often shows changes in response to exposure to xenobiotics or disease-induced stress, because of the biological system's attempt to maintain homeostasis. In this review, we focus on the most recent advances and applications of metabolomics in toxicological research.