• Title/Summary/Keyword: Biological impacts

Search Result 207, Processing Time 0.024 seconds

Biological Pump in the East Sea Estimated by a Box Model (상자 모형으로 추정한 동해의 생물 펌프)

  • Kim, Jae-Yeon;Kang, Dong-Jin;Kim, Eung;Cho, Jin-Hyung;Lee, Chang-Rae;Kim, Kyung-Ryul;Lee, Tong-Sup
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.295-306
    • /
    • 2003
  • Recently efforts are underway to analyze the impacts of anthropogenic $CO_2$ on the global environments and the amount of oceanic uptake increase. The East Sea is now viewed as a miniature ocean because its circulation pattern is similar to the ocean conveyer belt. The biological pump of the East Sea is a vital component to understand the carbon cycle quantitatively. In this paper, the biological pump is estimated utilizing the stoichiometric ratio between carbon and phosphorus. A simple phosphate budget model is constructed based on the seawater and dissolved oxygen box model that can simulate the recent structural change in deep water circulation of the East Sea. A model run from you 1952 to 2040 shows the steadily intensifying biological pump. Currently it exports about 0.016 Pg C yr$^{-1}$ , which corresponds to 35% of the carbon introduced into the seawater by the air-sea exchange. An increased oxygen supply to the central water mass as a result of from the transition in the ventilation system might enhance the remineralization of sinking biogenic particles. This should strengthen the upward nutrient flux into the surface layer. Consequently, the biological sequestration of anthropogenic carbon is expected to increase with time. The estimated biological uptake of the anthropogenic carbon in the East Sea since the Industrial Revolution is estimated as 0.025 Pg C.

International Trends and Policy Recommendations Related to Non-Indigenous Species (외래종관리에 관한 국제동향 및 정책방향)

  • Park, Yong-Ha
    • Journal of Environmental Policy
    • /
    • v.1 no.1
    • /
    • pp.25-45
    • /
    • 2002
  • Opening of trade relationships through an increasing number of international free trade agreements and the now defunct General Agreement on Tariffs and Trade has resulted in an increase the number of the species being exchanged in the world. In the last 20 years, international environmental laws have multiplied and a number of treaties address harmful non-indigenous species (NIS) directly with specific provisions, while other treaties deal with related environmental issues and indirectly affect international regulation of NIS; however, such treaties are weak due to lack of enforceability. From the stand point of national law, many countries including the USA, Australia and New Zealand enforce national laws and regulations to protect biological resources. Typical strategies include : 1) strengthening quarantines to prevent unintentional and illegal introduction of harmful NIS, and 2) developing technologies for managing harmful NIS. However, the recent international trend for managing NIS has shifted. In 2002, the Bonn Guidelines on Access to Genetic Resources and Fair and Equitable Sharing of the Benefit Arising out of their Utilization was adopted at the 6th Conference of the Parties to the Convention on Biodiversity. One major issue highlighted in the document is that "there is no more free of charge to get a biological resource from other countries". The Bonn guidelines will affect international and national NIS regulatory systems because the NIS is a potentially disrupts ecosystems as well as native species. A number of impacts are expected including the revamping of national biodiversity policy regimes in many countries in the world. In particular, the ROK, which is not very biologically diverse, has to evolve national laws to protect valuable ecosystems from NIS. In the meanwhile, national rights of using beneficial indigenous and non-indigenous species as biological resources should be considered through the investigation and national registration of NIS around the world for the promotion of the biotech industry.

  • PDF

A primary study on the effect of artificial disturbance on a fishing area by shrimp beam trawl (새우조망에 의한 어업구역의 인위적인 영향에 대한 선행연구)

  • Cha, Bong-Jin;Yoon, Sang-Pil;Jung, Rae-Hong;Kim, Soung-gill;Lee, Jae-Soung;Yoon, Won-Duck;Shin, Jong-keun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.4
    • /
    • pp.223-233
    • /
    • 2009
  • It has been considered that fishing areas for shrimp beam trawl have been in ruin because Korean local governments have permitted trawling into the areas limited by the fisheries local regulations from 1994. Physical and biological effects of the trawling were investigated in the study. Physical effects were investigated by optical methods such as trawling tracking by side scan sonar and comparing the gear both before and after trawling. Biological aspects were investigated by grab sampling of benthic animals, concentration of trace metals in sediment and a flux evaluation of ${NH_4}^+,\;{PO_4}^-,\;and\;SiO_2$ by coring. The fishing activity had physical impacts on the seabed but these recovered naturally in less than fourty days naturally, which increased the benthic biodiversity, increases the trace metal concentration of and nutrient flux into the seawater, especially phosphate and silicate. This method and these results can help in further studies looking for disturbances by fishing.

Meta-analysis Reveals That the Genus Pseudomonas Can Be a Better Choice of Biological Control Agent against Bacterial Wilt Disease Caused by Ralstonia solanacearum

  • Chandrasekaran, Murugesan;Subramanian, Dharaneedharan;Yoon, Ee;Kwon, Taehoon;Chun, Se-Chul
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.216-227
    • /
    • 2016
  • Biological control agents (BCAs) from different microbial taxa are increasingly used to control bacterial wilt caused by Ralstonia solanacearum. However, a quantitative research synthesis has not been conducted on the role of BCAs in disease suppression. Therefore, the present study aimed to meta-analyze the impacts of BCAs on both Ralstonia wilt disease suppression and plant (host) growth promotion. The analysis showed that the extent of disease suppression by BCAs varied widely among studies, with effect size (log response ratio) ranging from -2.84 to 2.13. The disease incidence and severity were significantly decreased on average by 53.7% and 49.3%, respectively. BCAs inoculation also significantly increased fresh and dry weight by 34.4% and 36.1%, respectively on average. Also, BCAs inoculation significantly increased plant yield by 66%. Mean effect sizes for genus Pseudomonas sp. as BCAs were higher than for genus Bacillus spp. Among antagonists tested, P. fluorescens, P. putida, B. cereus, B. subtilis and B. amyloliquefaciens were found to be more effective in general for disease reduction. Across studies, highest disease control was found for P. fluorescens, annual plants, co-inoculation with more than one BCA, soil drench and greenhouse condition were found to be essential in understanding plant responses to R. solanacearum. Our results suggest that more efforts should be devoted to harnessing the potential beneficial effects of these antagonists, not just for plant growth promoting traits but also in mode of applications, BCAs formulations and their field studies should be considered in the future for R. solanacearum wilt disease suppression.

Development of Composite Soil Quality Index Evaluation System based on Web GIS (Web GIS기반의 복합적 토양 질 평가 시스템 개발)

  • Sung, Yunsoo;Yang, Jae E;Kim, Sung Chul;Ryu, Jichul;Jang, Wonseok;Kum, Donghyuk;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.693-699
    • /
    • 2015
  • It has been known that torrential rainfall events have been occurring worldwide due to climate change. The accelerated soil erosion has caused negative impacts on water quality and ecosystem of receiving waterbodies. Since soil security issues have been arising in various areas of the world, intensive interests have been given to topsoil management in Korea. Thus in this study, Web GIS-based computing system of physical, chemical, and biological topsoil quality indices were developed. In this study, five soil quality maps at national scale and top soil erosion potential were prepared for evaluation of soil quality based on soil erosion potential. For this system, the open source Web GIS engine, OpenGeo, was used as core engine of the system. With this system, decision makers or related personnel in areas of soil erosion Best Management Practices (BMPs) would be able to find the most appropriate soil erosion BMPs based on soil erosion potential and soil quality at the area of interest. The Web GIS system would be efficiently used in decision making processes because of ease-of-use interface and scientific data used in this system. This Web GIS system would be efficiently used because this system could provide scientific knowledge to decision makers or stakeholders. Currently various BMP database are being built to be used as a decision support system in topsoil management and topsoil quality areas.

Deficiency of Formyl Peptide Receptor 2 Retards Hair Regeneration by Modulating the Activation of Hair Follicle Stem Cells and Dermal Papilla Cells in Mice

  • Han, Jinsol;Lee, Chanbin;Jung, Youngmi
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.279-291
    • /
    • 2021
  • Hair loss is one of the most common chronic diseases, with a detrimental effect on a patient's psychosocial life. Hair loss results from damage to the hair follicle (HF) and/or hair regeneration cycle. Various damaging factors, such as hereditary, inflammation, and aging, impair hair regeneration by inhibiting the activation of hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs). Formyl peptide receptor 2 (FPR2) regulates the inflammatory response and the activity of various types of stem cells, and has recently been reported to have a protective effect on hair loss. Given that stem cell activity is the driving force for hair regeneration, we hypothesized that FPR2 influences hair regeneration by mediating HFSC activity. To prove this hypothesis, we investigated the role of FPR2 in hair regeneration using Fpr2 knockout (KO) mice. Fpr2 KO mice were found to have excessive hair loss and abnormal HF structures and skin layer construction compared to wild-type (WT) mice. The levels of Sonic hedgehog (Shh) and β-catenin, which promote HF regeneration, were significantly decreased, and the expression of bone morphogenetic protein (Bmp)2/4, an inhibitor of the anagen phase, was significantly increased in Fpr2 KO mice compared to WT mice. The proliferation of HFSCs and DPCs was significantly lower in Fpr2 KO mice than in WT mice. These findings demonstrate that FPR2 impacts signaling molecules that regulate HF regeneration, and is involved in the proliferation of HFSCs and DPCs, exerting a protective effect on hair loss.

Management and Remediation Technologies of Contaminated Sediment (오염퇴적물 관리방향 및 처리공법)

  • Kim, Geon-Ha;Jeong, Woo-Hyeok
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.1-9
    • /
    • 2007
  • As Total Maximum Daily Load program is being implemented, needs for the management and treatment of contaminated sediment are rising to attain cleaner water resources. In this paper, impacts and management methods of contaminated sediment were reviewed. Remediation technologies for contaminated sediment including dredging, natural attenuation, in situ solidification/stabilization, in situ biological remediation, in situ chemical remediation and capping were reviewed. Integrated remediation scheme was presented as well.

Promising Next Generation Technology in Toxicology-Toxicogenomics

  • Ryu, Jae-Chun;Kim, Meyoung-Kon;Cho, Man-Ho;Chun, Tae-Hoon
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Toxicology is a multidisciplinary field, and an important science that impacts both environmental health regulation and the development and practice of medicine. The rapid progress in cellular and molecular biology, like many other branches of biomedical research, toxicology is now experiencing a renaissance fueled by the application of "omic" technologies to gain a better understanding of the biological basis of toxicology of drugs and other environmental factors. In this review on current progress on toxicology, the future perspective, concept, approaches and applications of toxicogenomics as next generation promising technology in toxicology field will be described.

MAPPING WETLANDS AND FLOODS IN THE TONLE SAP BASIN, CAMBODIA, USING AIRSAR DATA

  • Milne, A.K.;Tapley, I.J.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.441-441
    • /
    • 2002
  • In order to ensure a balance between economic development and a healthy Mekong Basin environment supporting natural resources diversity and productivity critical to the livelihood of its 65 million inhabitants, the Mekong River Commission (MRC) has been investigating the use of radar to remotely characterize and monitor the diversity, complexity, size and connectivity of the Basin's aquatic habitats. The PACRIM AIRSAR Mission provided an opportunity to evaluate the usefulness of radar technology to derive information for assessing, forecasting and mitigating possible cumulative and long-term impacts of development on the natural environment and the people's livelihood. This paper presents the results of mapping wetland cover types using multi-polarimetric radar for an area of the north-western corner of the Tonle Sap basin with data acquired from the AIRSAR Mission in September 2000. The implementation of a newly developed segmentation classification routine used to derive the image classification is described and the results of a fieldwork campaign to check the classification is presented.

  • PDF

Removal of a synthetic broad-spectrum antimicrobial agent, triclosan, in wastewater treatment systems: A short review

  • Lee, Do Gyun
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.111-120
    • /
    • 2015
  • Contaminants of emerging concern (CECs) including endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care product chemicals (PPCPs) have recently received more attention because of their occurrence in water bodies and harmful impacts on human health and aquatic organisms. Triclosan is widely used as a synthetic broad-spectrum antimicrobial agent due to its antimicrobial efficacy. However, triclosan detected in aquatic environment has been recently considered as one of CECs, because of the potential for endocrine disruption, the formation of toxic by-products and the development of cross-resistance to antibiotics in aquatic environment. This comprehensive review focuses on the regulations, toxicology, fate and transport, occurrence and removal efficiency of triclosan. Overall, this review aims to provide better understanding of triclosan and insight into application of biological treatment process as an efficient method for triclosan removal.