• Title/Summary/Keyword: Biological hazards

Search Result 102, Processing Time 0.031 seconds

Behavioural and Metabolic Risk Factors for Mortality from Colon and Rectum Cancer: Analysis of Data from the Asia-Pacific Cohort Studies Collaboration

  • Morrison, David Stewart;Parr, Christine Louise;Lam, Tai Hing;Ueshima, Hirotsugu;Kim, Hyeon Chang;Jee, Sun Ha;Murakami, Yoshitaka;Giles, Graham;Fang, Xianghua;Barzi, Federica;Batty, George David;Huxley, Rachel Rita;Woodward, Mark
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.1083-1087
    • /
    • 2013
  • Background: Colorectal cancer has several modifiable behavioural risk factors but their relationship to the risk of colon and rectum cancer separately and between countries with high and low incidence is not clear. Methods: Data from participants in the Asia Pacific Cohort Studies Collaboration (APCSC) were used to estimate mortality from colon (International Classification of Diseases, revision 9 (ICD-9) 153, ICD-10 C18) and rectum (ICD-9 154, ICD-10 C19-20) cancers. Data on age, body mass index (BMI), serum cholesterol, height, smoking, physical activity, alcohol and diabetes mellitus were entered into Cox proportional hazards models. Results: 600,427 adults contributed 4,281,239 person-years follow-up. The mean ages (SD) for Asian and Australia/New Zealand cohorts were 44.0 (9.5) and 53.4 (14.5) years, respectively. 455 colon and 158 rectum cancer deaths were observed. Increasing age, BMI and attained adult height were associated with increased hazards of death from colorectal cancer, and physical activity was associated with a reduced hazard. After multiple adjustment, any physical activity was associated with a 28% lower hazard of colon cancer mortality (HR 0.72, 95%CI 0.53-0.96) and lower rectum cancer mortality (HR 0.75, 95%CI 0.45-1.27). A 2cm increase in height increased colon and all colorectal cancer mortality by 7% and 6% respectively. Conclusions: Physical inactivity and greater BMI are modifiable risk factors for colon cancer in both Western and Asian populations. Further efforts are needed to promote physical activity and reduce obesity while biological research is needed to understand the mechanisms by which they act to cause cancer mortality.

Experiment of Reactive Media Selection for the Permeable Reactive Barrier Treating Groundwater contaminated by Acid Mine Drainage (산성광산배수로 오염된 지하수 정화용 투수성 반응벽체 반응매질 선정 기초실험)

  • Ji Sang Woo;Cheong Young Wook
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.237-245
    • /
    • 2005
  • The batch tests were performed to evaluate the applicability of the permeable reactive barrier (PRB) to in-situ treatment of groundwater with high concentration of heavy metals. The lead\chates used in this study were collected from waste rock dump of the Imgy mine, and have a low pH and high metal concentration. The acidity loading was 65kg as $CaCO_3/day$, metal loading of Fe+Al+Mn was 11.6kg/day. This type of water could be treated with biological-mediated sulfate reduction using the organic carbon mixture as a reactive media. The batch tests were carried out with five mixtures that were composed with different mixing ratios of mushroom compost, pine-tree bark, and limestone cheep. Results indicated that the PRB could reduce the acidity loading $CaCO_3/day$ to 12.3kg and reduce the metal loading to 3.3kg/day. Considering about the low pH and high metal loading, the contaminated water may be ameliorated by passing it through the buffering PRB composed with inorganic carbonate materials and then through the PRB composed with the organic carbon mixture which can induce sulfate reduction.

Environment-friendly Processing Technologies of Mine Tailings: Research on the Characteristics of Mine Tailings when Developing of Deep Sea Mineral Resources (선광잔류물의 친환경적 처리 기술: 심해저광물자원개발시 발생하는 선광잔류물 특성 연구)

  • Moon, Inkyeong;Yoo, Chanmin;Kim, Jonguk
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.781-792
    • /
    • 2020
  • Mine tailings, which are inevitably formed by the development of manganese nodules, manganese crusts, and hydrothermal seafloor deposits, have attracted attention because of their quantity and potential toxicity. However, there is a lack of data on the quantity of mine tailings being generated, their physicochemical properties, and their effects as environmental hazards and on marine ecosystems in general. The importance of treating mine tailings in an environmentally friendly manner has been recognized recently and related reduction/treatment methods are being considered. In the case of deep-sea mineral resource development, if mine tailings cannot be treated aboard a ship, the issue becomes one of the cost of transporting them to land and solving the problem of environmental pollution there. Therefore, the Korea Institute of Ocean Science and Technology conducted research on the harmfulness of mine tailings, their effect on marine ecosystem, the diffusion model of contaminated particles, and candidate purification treatment technologies based on five representative controlling factors: 1) effects of pollution /on the environment, 2) effects of environmental/ biological hazards, 3) diffusion of particles, 4) mineral dressings, and 5) reducing/processing mine tailings. The results of this study can provide a basis for minimizing environmental problems by providing scientific evidences of the environmental effects of mine tailings. In addition, it is also expected that these results could be applied to the treatment of pollutants of different origins and at land-based mining waste sites.

Health Risk Assessment by Exposure to Heavy Metals in PM2.5 in Ulsan Industrial Complex Area (울산 산단지역 PM2.5 중 중금속 노출에 의한 건강위해성평가)

  • Ji-Yun Jung;Hye-Won Lee;Si-Hyun Park;Jeong-Il Lee;Dan-Ki Yoon;Cheol-Min Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.2
    • /
    • pp.108-117
    • /
    • 2023
  • Background: When particles are absorbed into the human body, they penetrate deep into the lungs and interact with the tissues of the body. Heavy metals in PM2.5 can cause various diseases. The main source of PM2.5 emissions in South Korea's atmosphere has been surveyed to be places of business. Objectives: The concentration of heavy metals in PM2.5 near the Ulsan Industrial Complex was measured and a health risk assessment was performed for residents near the industrial complex for exposure to heavy metals in PM2.5. Methods: Concentrations of heavy metals in PM2.5 were measured at four measurement sites (Ulsan, Mipo, Onsan, Maegok) near the industrial complexes. Heavy metals were analyzed according to the Air Pollution Monitoring Network Installation and Operation Guidelines presented by the National Institute of Environmental Research. Among them, only five substances (Mn, Ni, As, Cd, Cr6+) were targeted. The risk assessment was conducted on inhalation exposure for five age groups, and the excess cancer risk and hazard quotient were calculated. Results: In the risk assessment of exposure to heavy metals in PM2.5, As, Cd, and Cr6+ exceeded the risk tolerance standard of 10-6 for carcinogenic hazards. The highest hazard levels were observed in Onsan and Mipo industrial complexes. In the case of non-carcinogenic hazards, Mn was identified as exceeding the hazard tolerance of 1, and it showed the highest hazard in the Ulsan Industrial Complex. Conclusions: This study presented a detailed health risk from exposure to heavy metals in PM2.5 by industrial complexes located in Ulsan among five age groups. It is expected to be utilized as the basis for preparing damage control and industrial emission reduction measures against PM2.5 exposure at the Ulsan Industrial Complex.

Exploitation of the Dose/Time-Response Relationship for a New Measure of DNA Repari in the Single-Cell Gel Electrophoresis (Comet) Assay

  • Kim, Byung-Soo;Edler, Lutz;Park, Jin-Joo;Fournier, Dietrich Von;Haase, Wulf;Sautter-Bihl, Mare-Luise;Hagmuller, Egbert;Gotzes, Florian;Thielmann, Heinz Walter
    • Toxicological Research
    • /
    • v.20 no.2
    • /
    • pp.89-100
    • /
    • 2004
  • The comet assay (also called the single-cell gel electrophoresis assay) has been widely used for detecting DNA damage and repair in individual cells. Since the conventional methods of evaluating comet assay data using frequency statistics are unsatisfactory we developed a new quantitative measure of DNA damage/repair that is based on all information residing in the dose/time-response curves of a comet experiment. Blood samples were taken from 25 breast cancer patients before undergoing radiotherapy. The comet assay was performed under alkaline conditions using isolated lymphocytes. Tail DNA, tail length, tail moment and tail inertia of the comet were measured for each patient at four doses of $\gamma$-rays (0, 2, 4 and 8 Gy) and at four time points after irradiation (0, 10, 20 and 30 min) using 100 cells each. The resulting three-dimensional dose-time response surface was modeled by multiple regression, and the second derivative, termed 2D, on dose and time was determined. A software module was programmed in SAS/AF to compute 2D values. We applied the new method successfully to data obtained from cancer patients to be assessed for their radiation sensitivity. We computed the 2D values for the four damage measures, i.e., tail moment, tail length, tail DNA and tail inertia, and examined the pairwise correlation coefficients of 2D both on the log scale and the unlogged scale. 2D values based on tail moment and tail DNA showed a high correlation and, therefore, these two damage measures can be used interchangeably as far as DNA repair is concerned. 2D values based on tail inertia have a correlation profile different from the other 2D values which may reflect different facets of DNA damage/repair. Using the dose-time response surface, other statistical models, e.g., the proportional hazards model, become applicable for data analysis. The 2D approach can be applied to all DNA repair measures, Le., tail moment, tail length, tail DNA and tail inertia, and appears to be superior to conventional evaluation methods as it integrates all data of the dose/time-response curves of a comet assay.

Survival Rate and Biological Effect of Chronic Medium-Dose-Rate Gamma Radiation Exposed to Mice (장기 중선량률 감마선 피폭에 의한 마우스의 생존율 및 생물학적 영향 평가)

  • Kim, Jae-Kyung;Jin, Yeung Bae;Oh, Su-Mi;Lee, Yun-Jong;Sung, Nak-Yun;Song, Beom-Seok;Park, Jong-Heum;Byun, Eui-Baek;Lee, Ju-Woon;Kim, Jae-Hun
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.155-159
    • /
    • 2013
  • Late effects of chronic exposure to gamma radiation are potential hazards to worker in radiation facilities as well as to the general public. Recently, chronic gamma radiation exposure effects have become a serious concern. Using a total of 60 mice, we studied the biological effects of medium-dose chronic exposure to gamma radiation. Sixty female 6-week-old specific pathogen free Balb/c mice were randomly divided into six groups (five groups irradiated and one non-irradiated control group). Irradiation was carried out for 7 days using gamma rays at dose rates of 119.65, 238.10, 357.14, 476.19 and $595.24mGy\;h^{-1}$ with total doses 20, 40, 60, 80 and 100 Gy. After irradiation, we determined survival rate of gamma radiation exposed mice during 1 week and 476.19 and $595.24mGy\;h^{-1}$ exposed group mice showed less 10% of survival rate. Otherwise, 119.65, 238.10 and $357.14mGy\;h^{-1}$ exposed group mice were survived each 100%, 80% and 70%. Half of survived mice after 1 week are immediately sacrifice and counted body and spleen weights. Compared with control non-irradiated group, total body weights and spleen weights isolated from 119.65, 238.10 and 357.14 irradiated group mice showed significant decreased. However, no significant alteration was observed between 119.65, 238.10 and $357.14mGy\;h^{-1}$ irradiated group. Overall, our results show for the first time that medium-dose chronic gamma radiation has the potential to stimulation of biological effects.

A Study on the Risk Assessment Occurred Possibly in a Civil Project (토목공사에서 발생 가능한 리스크평가에 관한 연구)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.29 no.2
    • /
    • pp.59-66
    • /
    • 2011
  • A variety of risks caused by natural, technological and biological hazards threaten a business continuity of an organization. Business continuity is very important issue for all organizations and its proper management may control success and failure of an organization. Business continuity plan (BCP) may be defined as a management process which provides a business continuity. BCP includes risk management, operational continuity plan, response/ recovery, exercise/study and crisis communication, etc. Risk management is a systematic method to identify, analyze, evaluate and treat emergency risks and risk assessment is composed of identifying, analyzing and evaluating emergency risks. Risk assesment is the first step for making BCP. In this study, risk assessment has been conducted for sewer laying project. Through assessing risks, 18 risks that may threaten the construction operation are identified and it is founded to be that high levels of risks which require treatment are 'collapse of excavation surface', 'breakage of ground infra-facilities', 'noise & dust dispersion' and 'rise of material costs'.

The Study on the Microbiological Limitation Standards Setting of Handmade Rice-cake by Steam Processing (수작업떡류의 증자공정에 의한 미생물학적 한계기준 설정에 관한 연구)

  • Lee, Ung-Soo;Kwon, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4310-4317
    • /
    • 2014
  • The HACCP (Hazard Analysis Critical Control Point) system was applied to Handmade Rice Cakes. The main ingredients of rice cakes, work facilities and workers were provided from the KB company located in Seogye-dong Yongsan-gu, Seoul between September 12, 2012 and February 13, 2013. The manufacturing process chart was prepared by referring to the manufacturing process of rice cake manufacturers in general. Microbiological hazard analysis of the raw materials and after the steaming process of rice-cakes showed a safe result. On the other hand, the microorganism test on the manufacturing environment and workers suggested that the microbiological hazard can be reduced through systematic cleaning and disinfection, accompanied by improved personal hygiene based on hygienic education for workers on the management of microorganisms in the working area.

Hazards Caused by UV Rays of Xenon Light Based High Performance Solar Simulators

  • Dibowski, Gerd;Esser, Kai
    • Safety and Health at Work
    • /
    • v.8 no.3
    • /
    • pp.237-245
    • /
    • 2017
  • Background: Solar furnaces are used worldwide to conduct experiments to demonstrate the feasibility of solar-chemical processes with the aid of concentrated sunlight, or to qualify high temperature-resistant components. In recent years, high-flux solar simulators (HFSSs) based on short-arc xenon lamps are more frequently used. The emitted spectrum is very similar to natural sunlight but with dangerous portions of ultraviolet light as well. Due to special benefits of solar simulators the increase of construction activity for HFSS can be observed worldwide. Hence, it is quite important to protect employees against serious injuries caused by ultraviolet radiation (UVR) in a range of 100 nm to 400 nm. Methods: The UV measurements were made at the German Aerospace Center (DLR), Cologne and Paul-Scherrer-Institute (PSI), Switzerland, during normal operations of the HFSS, with a high-precision UV-A/B radiometer using different experiment setups at different power levels. Thus, the measurement results represent UV emissions which are typical when operating a HFSS. Therefore, the biological effects on people exposed to UVR was investigated systematically to identify the existing hazard potential. Results: It should be noted that the permissible workplace exposure limits for UV emissions significantly exceeded after a few seconds. One critical value was strongly exceeded by a factor of 770. Conclusion: The prevention of emissions must first and foremost be carried out by structural measures. Furthermore, unambiguous protocols have to be defined and compliance must be monitored. For short-term activities in the hazard area, measures for the protection of eyes and skin must be taken.

Dynamic Characterization of Fall for Development of Fracture Prevention System (골절 방지 시스템의 개발을 위한 낙상 동적 특성 분석)

  • Kim, Seong-Hyun;Kim, Yong-Yook;Kwon, Tae-Kyu;Kim, Dong-Wook;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.811-816
    • /
    • 2007
  • The social activities of the elderly have been increasing as our society progresses toward an aging society. As their activities are increased, the occurrence of falls that could lead to fractures are increased. Falls are serious health hazards to the elderly and we need more thorough understanding of falls including the progress of falls and the impact area in various fall directions. Many of the traditional methods of falls research dealt with voluntary falls by younger subject since older subject can easily get fracture from voluntary falls. So, it has been difficult to get exact data about falls of the elderly. Here, we tried to capture the characteristics of the movements of major joints using three dimensional motion capture system during falls experiments using a moving mattress that can safely induce unexpected falls. Healthy younger subjects participated in the actual falls experiment and the moving mattress was actuated by a pneumatic system. The kinematic parameters such as velocities and accelerations of major segments were imported to a computer simulation environment and falls to hard surfaces were simulated in a computational environment using a realistic human model of aged persons. The simulation was able to give approximations to contact forces which can occur during actual falls.