• Title/Summary/Keyword: Biological half life

Search Result 217, Processing Time 0.03 seconds

Determination of Pre-Harvest Residue Limits of Pesticides Metalaxyl-M and Flusilazole in Oriental Melon (생산단계 참외 중 Metalaxyl-M 및 Flusilazole의 잔류허용기준 설정연구)

  • Kim, Da Som;Kim, Kyung Jin;Kim, Hae Na;Kim, Ji Yoon;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The present study was performed to investigate the pre-harvest residue limit (PHRL) of pesticides namely, metalaxyl-M and flusilazole in oriental melon, and to identify the biological half-life and characteristics of their residues. In this study, pesticides were sprayed once as single spray and double spray on oriental melon. The oriental melon samples were collected at 0, 1, 2, 3, 5, 7, 9 and 11 days before harvest and samples were extracted with QuEChERS method. The residues of both the pesticides were quantified using GC/NPD and LC/MS/MS. The limit of detection was found to be 0.02 mg/kg and 0.01 mg/kg and their recoveries were greater than 95% (95.7% ~ 103.2% for metalaxyl-M and 100.2% ~ 106.8% for flusilazole) for both pesticides. The biological half-lives of both metalaxyl-M and flusilazole were 12 days at single and double spray, respectively. The PHRL of metalaxyl-M and flusilazole was found 1.0 mg/kg and 0.3 mg/kg, respectively for 10 days before harvest. The results of the present study shows the residual level of both the pesticides metalaxyl-M and flusilazole in oriental melon were less than their maximum residual limits.

Residue Patterns of Fungicides, Flusilazole and Myclobutanil in Apples (살균제 Flusilazole 및 Myclobutanil의 사과 중 잔류양상)

  • Hwang, Jeong-In;Kim, Jang-Eok
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.4
    • /
    • pp.272-279
    • /
    • 2013
  • The dissipation patters of the triazole fungicides flusilazole and myclobutanil in apples were investigated to establish the biological half-lives and pre-harvest residue limits (PHRLs). The residual amounts of the fungicides sprayed with single or triple doses were below the maximum residue limits (MRL) for apples established by Ministry of Food and Drug Safety. The dissipation constants of the fungicides in the apples were 0.0513 for flusilazole and 0.0244 for myclobutanil meaning their biological half-lives were calculated as 6.2-6.7 days for flusilazole and 13.3-24.8 days for myclobutanil. The PHRLs calculated using the dissipation constants indicated that the residual amounts of flusilazole and myclobutanil in the apples at the harvesting date would be below the MRLs if their residual amounts were 0.43 and 0.59 mg/kg, respectively, at 7 days prior to harvesting the apples.

Establishment of Pre-Harvest Residue Limits (PHRLs) of Fluopicolide and Metrafenone in Cherry Tomato (Lycopersicon esculentum Mill.) (방울토마토(Lycopersicon esculentum Mill.) 생산단계에서 Fluopicolide 및 Metrafenone의 잔류허용기준 설정)

  • Hur, Kyung Jin;Woo, Min Ji;Kim, Ji Yoon;Saravanan, Manoharan;Kwon, Chan-Hyeok;Son, Yong Wook;Hur, Jang Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.328-335
    • /
    • 2015
  • BACKGROUND: The present investigation was aimed to predict the pre-harvest residue limits (PHRLs) of the fluopicolide and metrafenone on cherry tomato and to estimate their half-life and characteristics of the residues.METHODS AND RESULTS: Pesticides were treated once on cherry tomato in field 1 and 2 under the standard application rate. The samples were collected 7 times at the end of 0(2 hours after pesticides spaying), 1, 2, 3, 5, 7 and 10 days before harvest. Residues of fluopicolide and metrafenone were analyzed by the LC-MS/MS. In this study, the method limit of quantification (MLOQ) for both fluopicolide and metrafenone in cherry tomato was found to be 0.005 mg kg-1. Their recovery levels were 92.7∼94.8% and 82.6∼88.0%, shown with coefficient of variation of less than 10%. Half-life of fluopicolide and metrafenone in field 1 and 2 were found to be 15.0 days and 12.8 days, 18.9 days and 21.5 days, respectively.CONCLUSION: Based on the results, this study shows the level of PHRL on cherry tomato is 0.27 mg/kg for fluopicolide and 2.29 mg/kg for metrafenone at 10 days before harvesting. The present study indicates the residues of both pesticides on cherry tomato will be below maximum residue limit (MRL) at harvest.

Residual Characteristics of Bistrifluron and Fluopicolide in Korean Cabbage for Establishing Pre-Harvest Residue Limit (생산단계 잔류허용기준 설정을 위한 엇갈이배추 중 bistrifluron과 fluopicolide의 잔류 특성 연구)

  • Lee, Dong Yeol;Jeong, Dong Kyu;Choi, Geun-Hyoung;Lee, Deuk-Yeong;Kang, Kyu Young;Kim, Jin Hyo
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.4
    • /
    • pp.361-369
    • /
    • 2015
  • This study investigated residual characteristics of bistrifluron and fluopicolide in Korean cabbage, and suggested the pre-harvest residue limits (PHRLs) based on their dissipation patterns and biological half-lives. The pesticides were sprayed on Korean cabbage in two different region under greenhouse conditions at the recommended dose, respectively. The samples for residue analysis were harvested at 0 (2 hr), 1, 2, 4, 6, 8 and 10 days after treatment, and analyzed by HPLC after clean-up with Florisil SPE. The limit of quantification (LOQ) was $0.03mg\;kg^{-1}$ for bistrifluron and fluopicolide, and the recoveries ranged from 87.2-110.6% with below 5% of RSD. The biological half-lives of field I and field II were 3.9 and 4.2 days for bistrifluron and 4.9 and 4.2 days for fluopicolide, respectively. The PHRL of bistrifluron and fluopicolide were recommended as 3.83 and $3.23mg\;kg^{-1}$ for 10 days before harvest, respectively.

Residues and Half-lives of Bitertanol and Tebuconazole in Greenhouse-Grown Peppers (시설재배 고추중 Bitertanol 및 Tebuconazole 잔류양상)

  • Seong, Ki-Yong;Jeong, Mong-Hee;Hur, Jang-Hyun;Kim, Jeong-Gyu;Lee, Kyu-Seung;Choi, Kyu-Il
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.113-119
    • /
    • 2004
  • Persistence of the triazole fungicides, bitertanol and tebucnazole was investigated after their application at recommended and double rate on greenhouse-grown peppers. The half-life of bitertanol and tebuconazole on peppers at recommended and double rate was $5.2{\sim}6.1$ and $4.6{\sim}5.2$ days, respectively. Half-lives of bitertanol and tebuconazole on pepper leaves $(16.8{\sim}22.5\;days)$ was longer than those in the peppers. Residual concentration of bitertanol and tebuconazole on pepper leaves 24 days after application were 10.1 and 17.5 mg/kg, respectively, and these levels were higher than MRL which had been established at 3.0 and 5.0 mg/kg in Korea. Pattern of dissipation was well fitted to the first-order kinetics. In household washing experiment with surfactant, dislodgeable portions on pepper leaves of bitertanol and tebuconazole were occupied 36% and 48% of the residues found 24 days after application.

Characterization of Sterically Stabilized Liposomes and Their Stability in Rat Plasma in Vitro (입체구조적으로 안정화된 리포좀의 특성 및 혈장내 안정성)

  • 이지혜
    • YAKHAK HOEJI
    • /
    • v.44 no.3
    • /
    • pp.251-256
    • /
    • 2000
  • Sterically stabilized liposomes (SSL) composed of distearoylphosphatidylcholine, cholesterol, dicetylphosphate and distearoylphosphatiodylethanolamine-N-poly(ethyleneglycol) 2000 (DSPE-PEG 2000) were made by reverse phase evaporation method to prolong biological half-life and decrease toxic side effect of drug. Streptozocin (572), a water-soluble antitumor agent with short half-life, was selected as a model drug. The size of SSL was controlled by polycarbonate extrusion to 100 nm which is adequate size for long circulation in plasma. The release rate of drugs from SSL in PBS was evaluated. And the stability of STZ-containing liposomes against drug leakage into rat plasma was evaluated in order to investigate the interaction of liposome and plasma protein. Incorporation of DSPE-PEG 2000 into conventional liposomes significantly decreased the drug leakage into rat plasma.

  • PDF

Risk Assessment of Azoxystrobin Residues in Fresh Crown Daisy from Farm to Fork (생산단계에서 소비단계 생식 쑥갓의 azoxystrobin 잔류량에 따른 위해성 평가)

  • Sun-Woo Ban;A-Yeon Oh;Hee-Ra Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.2
    • /
    • pp.131-138
    • /
    • 2023
  • The biological half-life and dissipation rate of azoxystrobin in crown daisy were calculated to establish the pre-harvest residue limits (PHRLs). The pesticide residues were calculated after washing with five different processes to propose an effective process in the household and conducted a risk assessment to confirm dietary safety. Azoxystrobin was sprayed according to the critical good agricultural practices (cGAP) in two different field trials, and the samples were harvested 7 times. The limit of quantitation was 0.02 mg/kg, and the mean recoveries of azoxystrobin were within the range of 70~120% with below 20% coefficient variation at the concentration of 0.02 and 0.2 mg/kg . The biological half-lives were 7.4 and 4.7 days, and the dissipation rate constants were 0.0872 and 0.1217 in fields 1 and 2, respectively. The average removal rates were 58.13~78.13% by the different washing processes, and there were significant differences between the washing processes (one-way ANOVA analysis and post-hoc Duncan test, p-value<0.05). The residues of azoxystrobin in crown daisy were safe levels from farm to fork after application with the critical good agricultural practice (cGAP) registered in Korea.

Establishment of Pre-Harvest Residue Limit (PHRL) of Emamectin benzoate during Cultivation of Amaranth (생산단계 비름 중 Emamectin benzoate의 잔류허용기준 설정)

  • Kim, Kyung Jin;Kim, Da Som;Heo, Seong Jin;Ham, Hun Ju;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.2
    • /
    • pp.77-83
    • /
    • 2013
  • This study was performed to investigate pre-harvest residue limit (PHRL) in amaranth, to estimate biological half-life of emamectin benzoate and identify the characteristics of the residue. Pesticides of standard and double appplication rate, were sprayed once on amaranth at 0, 1, 2, 3, 5, 7, 10, 14 days before harvest. Amaranth sample was extracted with acetonitrile and partitioned with dichloromethane, and pesticide residues were determined with LC/MS/MS. The limit of detection of emamectin benzoate was 0.01 mg/kg. Recoveries of emamectin benzoate ($B_{1a}$, $B_{1b}$) at two fortification levels of 0.1 and 0.5 mg/kg, $B_{1a}$ were $93.3{\pm}0.7%$ and $93.2{\pm}7.7%$, $B_{1b}$ were $106.6{\pm}1.9%$ and $80.5{\pm}6.6%$, respectively. The biological half-lives of emamectin benzoate were about 2.0 days at standard application rate and 1.7 days at double application rate, respectively. The PHRL of emamectin benzoate were recommended as 0.84 mg/kg for 10 days before harvest.

A Study on the Design of Denitrification Reactor and the Characteristics (탈질화 반응기의 설계 및 특성에 관한 연구)

  • 김선화;송주영
    • Journal of Life Science
    • /
    • v.11 no.3
    • /
    • pp.273-278
    • /
    • 2001
  • Removal of nitrogen compound from waste water is essential and often accomplished by biological process. Deni-trification bacterium. Paracoccus denitrificans(KCTC 2350) is employed to estimate the ability and the characteristics of denitrification. In the immobilized biological reactor system, the measurement of absolute amount of active strain in the reactor is comparatively difficult or impossible. In this study, strain immobilized denitrification reactor was designed with the unwoven texture wrapped peeped hole plastic tube to calculated the absolute amount of active strain by comparing the activity of the immobilized reactor adn the free cell reactor. The reactor system was continuous stirred tank reactor and the rate of substrate consumption was assumed to be Michaelis-Menten equation. As a result, we found that the amount of immobilized active strain was the half of the total active strain in the reactor and the time required to reach in the equilibrium state in the immobilized reactor system was shorter than that of the free cell reactor system.

  • PDF

Six new dammarane-type triterpene saponins from Panax ginseng flower buds and their cytotoxicity

  • Li, Ke-Ke;Li, Sha-Sha;Xu, Fei;Gong, Xiao-Jie
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.215-221
    • /
    • 2020
  • Background: Panax ginseng has been used for a variety of medical purposes in eastern countries for more than two thousand years. From the extensive experiences accumulated in its long medication use history and the substantial strong evidence in modern research studies, we know that ginseng has various pharmacological activities, such as antitumor, antidiabetic, antioxidant, and cardiovascular system-protective effects. The active chemical constituents of ginseng, ginsenosides, are rich in structural diversity and exhibit a wide range of biological activities. Methods: Ginsenoside constituents from P. ginseng flower buds were isolated and purified by various chromatographic methods, and their structures were identified by spectroscopic analysis and comparison with the reported data. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H- tetrazolium bromide method was used to test their cytotoxic effects on three human cancer cell lines. Results: Six ginsenosides, namely 6'-malonyl formyl ginsenoside F1 (1), 3β-acetoxyl ginsenoside F1 (2), ginsenoside Rh24 (6), ginsenoside Rh25 (7), 7β-hydroxyl ginsenoside Rd (8) and ginsenoside Rh26 (10) were isolated and elucidated as new compounds, together with four known compounds (3-5 and 9). In addition, the cytotoxicity of these isolated compounds was shown as half inhibitory concentration values, a tentative structure-activity relationship was also discussed based on the results of our bioassay. Conclusion: The study of chemical constituents was useful for the quality control of P. ginseng flower buds. The study on antitumor activities showed that new Compound 1 exhibited moderate cytotoxic activities against HL-60, MGC80-3 and Hep-G2 with half inhibitory concentration values of 16.74, 29.51 and 20.48 μM, respectively.