• Title/Summary/Keyword: Biological analysis

Search Result 7,472, Processing Time 0.068 seconds

Nonlinear Time Series Analysis of Biological Chaos (생체 카오스의 비선형 시계열 데이터 분석)

  • 이병채;이명호
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.347-354
    • /
    • 1994
  • This paper describes a diagnostic protocol of nonlinear dynamic characteristics of biological system using chaos theory. An integrated chaos analysis system for the diagnosis of biological system was designed. We suggest a procedure of attractor reconstruction for reliable qualitative and quantitative analysis. The effect of autonomic nervous system activity on heart rate variability with power spectral analysis and its characteristics of chaotic attractors are investigated. The results show the applicability to evaluate the mental and physical conditions using nonlinear characteristics of biological signal.

  • PDF

Research Trends on Biological Education An analysis of Journal of Biological Education of England Using a Com puter Program (생물교육 연구의 동향- 영국의 Journal of Biological Education의 컴퓨터 분석)

  • Ahn, Tea-In
    • Journal of The Korean Association For Science Education
    • /
    • v.9 no.1
    • /
    • pp.69-74
    • /
    • 1989
  • For the advancement of research in biological education in Korea, research trends shown in Journal of Biological Education(JBE)of England were analyzed by using a PC program(REFMENU). Papers Published in JBE between 1977 and 1987 were registered on the program with classifying keys of biological education and biology including names of authors, year, title, volume pages, and key words. Those input-date were analyzed by sorting depend-ing on either the classifying keys or the key words. Among the 361 papers 28.8% was dealing with the theory of science education. The rest dealt with biology and biological education, together. Of the six categories of biological education, the research on biological curriculum was 41 % of total and was the most. The major trends in this category was in developing the content of the curriculum. In the research of biological instruction, 37 papers dealt with the instruction theory and the rest 60 papers dealt with the tactics of Instruction. Of the 60 papers on materials in biological education, the research in developing the biological material was the most. Thus, the general research trend was far more practical aspect than the theoretical aspect of biological education. In the analysis of the papers depending on the biological categories, the one dealt with ecology was the most(26.8%). The rest papers showed almost even distribution in the 13 categories of biology. The results of this analysis was discussed by comparing with the research trends in Korea to suggest the possible future studies.

  • PDF

Genomic Analysis of the Extremely Halophilic Archaeon Halobacterium noricense CBA1132 Isolated from Solar Salt That Is an Essential Material for Fermented Foods

  • Lim, Seul Ki;Kim, Joon Yong;Song, Hye Seon;Kwon, Min-Sung;Lee, Jieun;Oh, Young Jun;Nam, Young-Do;Seo, Myung-Ji;Lee, Dong-Gi;Choi, Jong-Soon;Yoon, Changmann;Sohn, Eunju;Rahman, MD. Arif-Ur;Roh, Seong Woon;Choi, Hak-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1375-1382
    • /
    • 2016
  • The extremely halophilic archaeon Halobacterium noricense is a member of the genus Halobacterium. Strain CBA1132 (= KCCM 43183, JCM 31150) was isolated from solar salt. The genome of strain CBA1132 assembled with 4 contigs, including three rRNA genes, 44 tRNA genes, and 3,208 open reading frames. Strain CBA1132 had nine putative CRISPRs and the genome contained genes encoding metal resistance determinants: copper-translocating P-type ATPase (CtpA), arsenical pump-driving ATPase (ArsA), arsenate reductase (ArsC), and arsenical resistance operon repressor (ArsR). Strain CBA1132 was related to Halobacterium noricense, with 99.2% 16S rRNA gene sequence similarity. Based on the comparative genomic analysis, strain CBA1132 has distinctly evolved; moreover, essential genes related to nitrogen metabolism were only detected in the genome of strain CBA1132 among the reported genomes in the genus Halobacterium. This genome sequence of Halobacterium noricense CBA1132 may be of use in future molecular biological studies.

Comparison of Near-Infrared Spectroscopy with Raman Spectroscopy from the Point of Nondestructive Analysis of Biological Materials

  • Takeyuki Tanaka;Hidetoshi Sato;Jung, Young-Mee;Yukihiro Ozaki
    • Near Infrared Analysis
    • /
    • v.1 no.2
    • /
    • pp.9-20
    • /
    • 2000
  • Recently, near-infrared (NIR) spectroscopy and Raman spectroscopy have received keen interest as powerful techniques for nondestructive analysis of biological materials. The purpose of this review paper is to compare the advantages of NIR and Raman spectroscopy in the nondestructive analysis. Both methods are quite unique and often complementary. For example. NIR spectroscopy is very useful in monitoring in situ the content of components inside biological materials while Raman spectroscopy is very suitable for identifying micro-components on the surface of biological materials. In this article specific characters of the two spectroscopic methods are discussed first and then several examples of applications of NIR and Raman spectroscopy to the biological nondestructive analysis are introduced.

Microbial Community Analysis Using Pyrosequencing

  • Chun, Jong-Sik;Lee, Jae-Hak;Kim, Ok-Sun;Na, Hyun-Soo;Kim, Byung-Kwon;Yoon, Suk-Hwan;Lee, Ki-Hyun;Ahn, Seon-Joo;Go, You-Seak;Seo, Jeong-Sun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.163-164
    • /
    • 2009
  • PDF

Gene Discovery Analysis from Mouse Embryonic Stem Cells Based on Time Course Microarray Data

  • Suh, Young Ju;Cho, Sun A;Shim, Jung Hee;Yook, Yeon Joo;Yoo, Kyung Hyun;Kim, Jung Hee;Park, Eun Young;Noh, Ji Yeun;Lee, Seong Ho;Yang, Moon Hee;Jeong, Hyo Seok;Park, Jong Hoon
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.338-343
    • /
    • 2008
  • An embryonic stem cell is a powerful tool for investigation of early development in vitro. The study of embryonic stem cell mediated neuronal differentiation allows for improved understanding of the mechanisms involved in embryonic neuronal development. We investigated expression profile changes using time course cDNA microarray to identify clues for the signaling network of neuronal differentiation. For the short time course microarray data, pattern analysis based on the quadratic regression method is an effective approach for identification and classification of a variety of expressed genes that have biological relevance. We studied the expression patterns, at each of 5 stages, after neuronal induction at the mRNA level of embryonic stem cells using the quadratic regression method for pattern analysis. As a result, a total of 316 genes (3.1%) including 166 (1.7%) informative genes in 8 possible expression patterns were identified by pattern analysis. Among the selected genes associated with neurological system, all three genes showing linearly increasing pattern over time, and one gene showing decreasing pattern over time, were verified by RT-PCR. Therefore, an increase in gene expression over time, in a linear pattern, may be associated with embryonic development. The genes: Tcfap2c, Ttr, Wnt3a, Btg2 and Foxk1 detected by pattern analysis, and verified by RT-PCR simultaneously, may be candidate markers associated with the development of the nervous system. Our study shows that pattern analysis, using the quadratic regression method, is very useful for investigation of time course cDNA microarray data. The pattern analysis used in this study has biological significance for the study of embryonic stem cells.

An Overview of Different Techniques on the Microbial Community Structure, and Functional Diversity of Plant Growth Promoting Bacteria

  • Kim, Kiyoon;Islam, Rashedul;Benson, Abitha;Joe, Manoharan Melvin;Denver, Walitang;Chanratan, Mak;Chatterjee, Poulami;Kang, Yeongyeong;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.144-156
    • /
    • 2016
  • Soil is a dynamic biological system, in which it is difficult to determine the composition of microbial communities. Knowledge of microbial diversity and function in soils are limited because of the taxonomic and methodological limitations associated with studying the organisms. In this review, approaches to measure microbial diversity in soil were discussed. Research on soil microbes can be categorized as structural diversity, functional diversity and genetic diversity studies, and these include cultivation based and cultivation independent methods. Cultivation independent technique to evaluate soil structural diversity include different techniques such as Phospholipid Fatty Acids (PLFA) and Fatty Acid Methyl Ester (FAME) analysis. Carbon source utilization pattern of soil microorganisms by Community Level Physiological Profiling (CLPP), catabolic responses by Substrate Induced Respiration technique (SIR) and soil microbial enzyme activities are discussed. Genetic diversity of soil microorganisms using molecular techniques such as 16S rDNA analysis Denaturing Gradient Gel Electrophoresis (DGGE) / Temperature Gradient Gel Electrophoresis (TGGE), Terminal Restriction Fragment Length Polymorphism (T-RFLP), Single Strand Conformation Polymorphism (SSCP), Restriction Fragment Length Polymorphism (RFLP) / Amplified Ribosomal DNA Restriction Analysis (ARDRA) and Ribosomal Intergenic Spacer Analysis (RISA) are also discussed. The chapter ends with a final conclusion on the advantages and disadvantages of different techniques and advances in molecular techniques to study the soil microbial diversity.

Functional Annotation and Analysis of Korean Patented Biological Sequences Using Bioinformatics

  • Lee, Byung Wook;Kim, Tae Hyung;Kim, Seon Kyu;Kim, Sang Soo;Ryu, Gee Chan;Bhak, Jong
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.269-275
    • /
    • 2006
  • A recent report of the Korean Intellectual Property Office(KIPO) showed that the number of biological sequence-based patents is rapidly increasing in Korea. We present biological features of Korean patented sequences though bioinformatic analysis. The analysis is divided into two steps. The first is an annotation step in which the patented sequences were annotated with the Reference Sequence (RefSeq) database. The second is an association step in which the patented sequences were linked to genes, diseases, pathway, and biological functions. We used Entrez Gene, Online Mendelian Inheritance in Man (OMIM), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) databases. Through the association analysis, we found that nearly 2.6% of human genes were associated with Korean patenting, compared to 20% of human genes in the U.S. patent. The association between the biological functions and the patented sequences indicated that genes whose products act as hormones on defense responses in the extra-cellular environments were the most highly targeted for patenting. The analysis data are available at http://www.patome.net

Relationship between Physical Environmental Factors and Biological Indices of A Mountain Valley Stream (Mt. Cheoggye) (산간계류(청계산)의 물리적 환경요인과 생물지수의 관계)

  • Minjeong Yeo;Dongsoo Kong
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.4
    • /
    • pp.288-301
    • /
    • 2023
  • This study aims to identify benthic macroinvertebrate fauna inhabiting at the mountain valley stream (Mt. Cheonggye) in Korea and the relationship between physical environmental factors and biological indices. Benthic macroinvertebrates were collected at five locations on August 24 and October 14, 2020, and were identified as 4 phyla, 7 classes, 16 orders, 42 families, and 72 species. Dominance ranged from 0.38 to 0.59, diversity 2.81 to 3.75, richness 3.25 to 4.63, evenness 0.65 to 0.84, and %EPT (Ephemeroptera-PlecopteraTrichoptera) richness value 42% to 73%, respectively. All sites were evaluated as a very good status by mostly biological indices based on tolerance of indicator organisms in Korea. As a result of principal component analysis, biological indices are classified into species-level indices and higher cartegory-level indices according to the taxonomic level of the indicator organism considered in each index. As a result of canonical correspondence analysis, it was confirmed that current velocity was a major factor that increased species richness and classified biological indices according to taxonomic category level. Water depth was a major factor related to the community indices, and the deeper the water depth, the lower the diversity and the evenness.

Expression and phosphorylation analysis of soluble proteins and membrane-localised receptor-like kinases from Arabidopsis thaliana in Escherichia coli

  • Oh, Eun-Seok;Eva, Foyjunnaher;Kim, Sang-Yun;Oh, Man-Ho
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.315-321
    • /
    • 2018
  • Molecular and functional characterization of proteins and their levels is of great interest in understanding the mechanism of diverse cellular processes. In this study, we report on the convenient Escherichia coli-based protein expression system that allows recombinant of soluble proteins expression and cytosolic domain of membrane-localised kinases, followed by the detection of autophosphorylation activity in protein kinases. This approach is applied to regulatory proteins of Arabidopsis thaliana, including 14-3-3, calmodulin, calcium-dependent protein kinase, TERMINAL FLOWER 1(TFL1), FLOWERING LOCUS T (FT), receptor-like cytoplasmic kinase and cytoplasmic domain of leucine-rich repeat-receptor like kinase proteins. Our Western blot analysis which uses phospho-specific antibodies showed that five putative LRR-RLKs and two putative RLCKs have autophosphorylation activity in vitro on threonine and/or tyrosine residue(s), suggesting their potential role in signal transduction pathways. Our findings were also discussed in the broader context of recombinant expression and biochemical analysis of soluble and membrane-localised receptor kinases in microbial systems.