• 제목/요약/키워드: Biological activated carbon (BAC)

검색결과 64건 처리시간 0.021초

저온에서 생물활성탄의 기질제거특성 (Substrate Removal Characteristics for Low Temperature by Biological Activated Carbon)

  • 류성호;박중현
    • 상하수도학회지
    • /
    • 제11권2호
    • /
    • pp.76-93
    • /
    • 1997
  • Activated carbon is widely used for the treatment of water, wastewater and other liquid wastes. Biological activated carbon (BAC) process is water and wastewater treatment process developed in the 1970's. In addition to activated carbon adsorption, biodegradation organic pollutants occurs in the BAC bed where a large amount of aerobic biomass grows. This results in a long operation time of the carbon before having to be regenerated and thus a low treatment cost. Although the BAC process has been widely used, its mechanisms have not been well understood, especially the relationship between biodegradation and carbon adsorption, whether these two reactions can promote each other or whether they just simultaneously exist in the BAC bed. Also, the phenomenon of bioregeneration has been confused that previously occupied adsorption sites appear to be made available through the actions of microorganisms. And that, because biological process is influenced by low temperature, the mechanism of the BAC process is also effected by temperature variation in our country of winter temperature near the freezing point. Therefore, the objective of this study examines closely the mechanism of the BAC process by temperature variation using phenol as substrate. From this study, biological activated carbon is good substrate removal better than non adsorbing materials (charcoal, sand) as temperature variation, especially low temperature(near $5^{\circ}C$).

  • PDF

낙동강 하류 상수원수의 생물활성탄에 의한 수질개선 및 세균분포 특성 (Improving Water Quality and Bacterial Characteristics during Water Treatment Process Using Biological Activated Carbons on Downstream of the Nakdong River)

  • 박홍기;나영신;정종문;류동춘;이상준;홍용기
    • 한국환경과학회지
    • /
    • 제10권2호
    • /
    • pp.105-111
    • /
    • 2001
  • Improvement of water quality and Investigation of bacterial characteristics have been conducted in a pilot plant using biological activated carbon (BAC) in water treatment process at the downstream of the Nakdong River. Most of water control parameters were highly improved after passing through BAC. Approximately 54% of dissolved organic carbon was removed in coal-based BAC process. Bacterial biomass and bacterial production appeared $9.8{\times}10^8 CFU/g and 7.1mg-C/m^3$.hr in coal-based BAC, respectively. Predominant bacteria species grown in BAC were identified as Pseudomonas, Flavobacterium, Alcaligenes, Acinetobacter and Aeromonas species. Particularly Pseudomonas vesicularis was dominant in both coal-based and coconut-based BACs, while Pseudomonas cepacia was dominant in wood-based BAC.

  • PDF

생물활성탄처리에서 제거된 유기물 특성 (Characterization of Organic Matters Removed by Biological Activated Carbon)

  • 김우항;오카다미츠마사
    • 한국환경과학회지
    • /
    • 제16권6호
    • /
    • pp.671-675
    • /
    • 2007
  • The objective of this study was to clarify the characteristics of the removed micropollutant since the breakthrough of adsorption ability was occurred in biological activated carbon(BAC) process. The removal efficiency of DOC (Dissolved Organic Carbon) was 36 % in the breakthrough of BAC occurred by NOM (Natural Organic Matter). The most of removal DOC was found out the adsorbable and biodegradable DOC (A&BDOC). But it was not clear to remove by any mechanism because A&BDOC have simultaneously the adsorption of activated carbon and biodegradation by microorganism in BAC. The removal of bromophenol was examined with BAC and rapid sand filter, for investigation of DOC removal mechanism in the breakthrough of BAC. In this experiment, BAC filter has been operated for 20 months for the treatment of reservoir water. The BAC filter was already exhausted by NOM. Bromophenol, adsorbable and refractory matter, was completely removed by BAC filter. Therefore, it might be removed by the adsorption in BAC. Adsorption isotherms of bromophenol were compared to two BACs which was preloaded with 500 daltons and 3,000 daltons of NOM. BAC preloaded with 3,000 daltons of NOM was not decreased to the adsorbability of bromophenol but BAC preloaded with 500 daltons of NOM was greatly decreased to it. These result indicated that NOM of low molecular weight can be removed by adsorption after a long period of operation and the breakthrough by NOM in BAC. Therefore, micropollutants might be removed through adsorption by saturated BAC.

생물활성탄의 여재선정을 위한 유기물의 흡착 및 생물분해 특성에 관한 연구 (A Study on the Characteristics of Adsorption and Biodegradation of Organic Matter for the Media Selection in Biological Activated Carbon)

  • 우달식
    • 환경위생공학
    • /
    • 제13권2호
    • /
    • pp.156-164
    • /
    • 1998
  • This study was performed to select media for the development of biological activated carbon process. Using activated carbon made by Norit, Calgon, Samchully Co., removal efficiency of humic acid by the isothermal adsorption test and biodegradation of organic matters by microbes attached to BAC and observation and counting of microbes attached to BAC were examined. The removal efficiency of humic acid with dose of activated carbon was influenced by initial concentration. Compared with other activated carbon, Norit was found to be most effective in view of adsorption capacity, biodegradation of organic matter, and attachment characteristics of microorganism. In conclusion, Norit which has high adsorption capacity and good biodegradation of organic matter was recommended for selecting media in BAC process.

  • PDF

Characteristics of Bacterial Communities in Biological Filters of Full-Scale Drinking Water Treatment Plants

  • Choi, Yonkyu;Cha, Yeongseop;Kim, Bogsoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권1호
    • /
    • pp.91-104
    • /
    • 2019
  • The taxonomic and functional characteristics of bacterial communities in the pre-chlorinated rapid filters and ozonated biological activated carbon (BAC) filters were compared using Illumina MiSeq sequencing of the 16S rRNA gene and community-level physiological profiling (CLPP) based on sole-carbon-source utilization patterns. Both the rapid filters and BAC filters were dominated by Rhizobiales within ${\alpha}-proteobacteria$, but other abundant orders and genera were significantly different in both types of filter. Firmicutes were abundant only in the intermediate chlorinated rapid filter, while Acidobacteria were abundant only in the BAC filters. Bacterial communities in the rapid filter showed high utilization of carbohydrates, while those in the BAC filters showed high utilization of polymers and carboxylic acids. These different characteristics of the bacterial communities could be related to the different substrates in the influents, filling materials, and residual disinfectants. Chlorination and ozonation inactivated the existing bacteria in the influent and formed different bacterial communities, which could be resistant to the oxidants and effectively utilize different substrates produced by the oxidant, including Phreatobacter in the rapid filters and Hyphomicrobium in the BAC filters. Bradyrhizobium and Leptothrix, which could utilize compounds adsorbed on the GAC, were abundant in the BAC filters. Ozonation increased taxonomic diversity but decreased functional diversity of the bacterial communities in the BAC filters. This study provides some new insights into the effects of oxidation processes and filling materials on the bacterial community structure in the biological filters of drinking water treatment plants.

The Presence of Significant Methylotrophic Population in Biological Activated Carbon of a Full-Scale Drinking Water Plant

  • Kim, Tae Gwan;Moon, Kyung-Eun;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권12호
    • /
    • pp.1774-1778
    • /
    • 2013
  • Methylotrophs within biological activated carbon (BAC) systems have not received attention although they are a valuable biological resource for degradation of organic pollutants. In this study, methylotrophic populations were monitored for four consecutive seasons in BAC of an actual drinking water plant, using ribosomal tag pyrosequencing. Methylotrophs constituted up to 5.6% of the bacterial community, and the methanotrophs Methylosoma and Methylobacter were most abundant. Community comparison showed that the temperature was an important factor affecting community composition, since it had an impact on the growth of particular methylotrophic genera. These results demonstrated that BAC possesses a substantial methylotrophic activity and harbors the relevant microbes.

정수처리에서의 생물활성탄 공정 (Biological Activated Carbon (BAC) Process in Water Treatment)

  • 손희종;유수전;노재순;유평종
    • 대한환경공학회지
    • /
    • 제31권4호
    • /
    • pp.308-323
    • /
    • 2009
  • 생물활성탄 공정은 정수처리에서 획기적인 공정으로 평가받고 있으며, 전 세계적으로 많은 정수장에서 BAC 공정을 채택하여 운전하고 있다. BAC 공정의 장점은 활성탄에 흡착된 오염물질들이 활성탄 표면에서 서식하고 있는 다양한 미생물 집합체(생물막)에 의해 생물분해되어 자연적으로 활성탄의 재생이 이루어져 활성탄 사용기간의 연장을 유도하여 정수처리 비용을 감소시킬 수 있다는 것이다. 또한, 유입수중의 생분해 가능한 유기물질들을 제거하여 배 급수관망에서 미생물의 재성장을 억제하는데 탁월하다. 그러나 BAC 공정의 효율이 활성탄 표면에 형성되어 있는 생물막에 의해 제한되어지는 문제점도 있다. 본 논문에서는 GAC에서 BAC로의 전환, BAC 생물막의 특성, 오염물질의 제거 메카니즘, BAC 공정에 영향을 미치는 인자들, BAC 공정의 제어 및 BAC 공정의 모델링에 대해 크게 여섯 부분으로 상세하게 기술하였다.

생물활성탄 부착세균 분포 실태에 관한 연구 (A Study of the Distribution of a Bacterial Community in Biological-Activated Carbon (BAC))

  • 박홍기;정은영;차동진;김정아;빈재훈
    • 생명과학회지
    • /
    • 제22권9호
    • /
    • pp.1237-1242
    • /
    • 2012
  • 정수처리 공정에서 생물활성탄(BAC) 공정은 미생물의 유기물 제거능을 극대화시킨 일종의 생물여과 공정이다. 본 연구는 낙동강 원수를 이용하여 재질이 다른 생물활성탄을 사용하고 있는 정수장을 대상으로 세균 군집을 조사하였다. 실험결과 석탄계 재질의 BAC 부착세균 생체량 및 활성도가 각각 $1.20{\sim}34.0{\times}10^7$ CFU/g, 0.61~1.10 mg-C/$m^3{\cdot}h$의 범위를 보여 세균 생체량과 DOC 제거율은 석탄계 재질이 가장 높은 것으로 나타났다. 부착세균을 동정한 결과 Pseudomonas 속이 우점하였으며, 그 다음으로 Chryseomonas 속, Flavobacterium 속, Alcaligenes 속, Acinetobacter 속, Sphingomonas 속 등의 순으로 동정되었다. 그리고 Pseudomonas cepacia는 석탄계 재질, Chryseomonas luteola는 목탄계 재질의 우점세균으로 조사되었다.

생물활성탄접촉조의 성능과 조작 (Performance and Operation of Biological Activated Carbon)

  • 이강춘;윤태경
    • 한국물환경학회지
    • /
    • 제22권1호
    • /
    • pp.83-90
    • /
    • 2006
  • Performance and operation of BAC in ozone-BAC advanced water treatment process were investigated using the pilot scale test plant built in D water purification plant. The performance was evaluated by the removal efficiencies of DOC, BDOC, ammonia nitrogen and THMs. The effect of EBCT on DOC removal was experimented for an effective operating condition, and the amount of attached biofilm was analyzed in various water temperatures and position of BAC. Two removal mechanisms, adsorption and biological decomposition by attached biofilm, were predominant to decrease the concentration of various contaminants. DOC was removed 40%, and the removal rate was decreased in winter time due to the lowered activity of attached biofilm. BDOC was effectively removed. THMs and ammonia nitrogen were mainly removed not in ozonation process but in BAC. Water temperature deeply influenced in removal efficiency of ammonia nitrogen. The amount of attached biofilm depended on water temperature and height of packed activated carbon column. Considering DOC removal efficiency and design EBCT of commercial BAC plant, the proper EBCT was 12.5 minutes.

음용수 소독 미량 유기오염물질 생성에 대한 생물활성탄(Biological Activated Carbon)의 흡착제거 특성 (The Adsorption Removal Characteristics of Trace Organic By-Products in Disinfection of Drinking Water by Biological Activated Carbon(BAC))

  • 옥치상;김정아;배기철
    • 한국환경과학회지
    • /
    • 제1권1호
    • /
    • pp.53-68
    • /
    • 1992
  • In order to research the adsorption removal characteristics of trace organic by-products in disinfection of drinking water by biological activated carbon(BAC), water samples disinfect- ted with $Cl_2$, $O_3$ and $ClO_2$ after treatment by fluidized-bed system with water added with humic acid(10mg/L) were investigated the formation and the removal of trihalomethanes (THMs), and the trace organic by-products by gas chromatography(GC) II gas chromatography/mass selective detector(GC/MSD). Control was used by activated carbon(AC) and water added with humic acid(HA). The results were summarized as follow : The THMs removal effect of BAC by chlorination was in lower 90 % than that of control(HA), the sorts of oxidants formed by $Cl_2$ , $O_3$ and $ClO_2$ were that $O_3$ was very fewer than $Cl_2$ or $ClO_2$, and that $ClO_2$ was fewer than $Cl_2$. The trace organic by-products were esters and phthalates etc. Based on results above, it is concluded that BAC was appeared the more desirable adsorbtion-degradation removal characteristics than that of AC.

  • PDF