• Title/Summary/Keyword: Biological Synthesis

Search Result 1,240, Processing Time 0.024 seconds

Insect Ornithine Decarboxylase (ODC) Complements SPE1 Knock-Out of Yeast Saccharomyces cerevisiae

  • Choi, Soon-Yong;Park, Hee Yun;Paek, Aron;Kim, Gil Seob;Jeong, Seong Eun
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.575-581
    • /
    • 2009
  • Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the biosynthesis of polyamines, which are essential for cell growth, differentiation, and proliferation. This report presents the characterization of an ODC-encoding cDNA (SlitODC) isolated from a moth species, the tobacco cutworm, Spodoptera litura (Lepidoptera); its expression in a polyamine-deficient strain of yeast, S. cerevisiae; and the recovery in polyamine levels and proliferation rate with the introduction of the insect enzyme. SlitODC encodes 448 amino acid residues, 4 amino acids longer than B. mori ODC that has 71% identity, and has a longer C-terminus, consistent with B. mori ODC, than the reported dipteran enzymes. The null mutant yeast strain in the ODC gene, SPE1, showed remarkably depleted polyamine levels; in putrescine, spermidine, and spermine, the levels were > 7, > 1, and > 4%, respectively, of the levels in the wild-type strain. This consequently caused a significant arrest in cell proliferation of > 4% of the wild-type strain in polyamine-free media. The transformed strain, with the substituted SlitODC for the deleted endogenous ODC, grew and proliferated rapidly at even a higher rate than the wild-type strain. Furthermore, its polyamine content was significantly higher than even that in the wild-type strain as well as the spe1-null mutant, particularly with a very continuously enhanced putrescine level, reflecting no inhibition mechanism operating in the putrescine synthesis step by any corresponding insect ODC antizymes to SlitODC in this yeast system.

Synthesis and Photopolymerization of Discotic Liquid Crystals Containing Hydrogen Bondings and Two Polymerizable Groups (두 종류의 중합기와 수소결합을 가지는 원반형 액정의 합성과 광중합)

  • Lee Jun-Hyup;Lee Seung-Jun;Jang Ji-Sun;Jho Jae-Young
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.373-379
    • /
    • 2006
  • Polymerizable discotic liquid crystals containing diacetylene and acryloyl groups were formed through hydrogen bonding between phloroglucinol core and polymerizable pyridine derivatives, and their photopolymerization behavior was investigated. The discotic complexes exhibited discotic columnar and rectangular columnar mesophases depending on the number of aromatic rings. Photopolymerization of the discotic complexes was carried out by UV irradiation in the liquid crystalline state. IR and UV-Vis spectroscopy affirmed that diacetylene and acryloyl groups were selectively Polymerized, and that crosslinked polymers containing short conjugated diacetylene oligomers were produced by 1,4-addition. X-ray diffraction experiment showed that the columnar order in the discotic complex containing phenyl-pyridine moiety was maintained after photopolymerization, and that the rectangular columnar order in he discotic Complex with biphenyl units was changed to the lamellar order.

Microwave-Accelerated Click Chemistry: Expeditious Synthesis of Novel Triazole-linked Salicylic β-D-O-Glycosides with PTP1B Inhibitory Activity

  • Yang, Jin-Wei;Li, Cui;He, Xiao-Peng;Zhao, Hong;Gao, Li-Xin;Zhang, Wei;Shi, Xiao-Xin;Tang, Yun;Li, Jia;Chen, Guo-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3359-3365
    • /
    • 2010
  • The incorporation of microwave irradiation with the prevalent "click chemistry" is currently of considerable synthetic interest. We describe here the introduction of such laboratorial shortcut into carbohydrate-based drug discovery, resulting in the rapid formation of a series of triazole-linked salicylic $\beta$-D-O-glycosides with biological activities. All "clicked" products were achieved in excellent yields ($\approx$ 90%) within only a quarter. In addition, based on the structural characteristics of the afforded glycomimetics, their inhibitory activities were evaluated toward protein tyrosine phosphatases 1B (PTP1B) and a panel of homologous protein tyrosine phosphatases (PTPs). Docking simulation was also conducted to plausibly propose binding modes of this glycosyl salicylate series with the enzymatic target.

Altered Protein Expression in Peach (Prunus persica) Following Fruit Bagging

  • Zhang, Wei;Zhao, Xiaomeng;Shi, Mengya;Yang, Aizhen;Hua, Baoguang;Liu, Yueping
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.32-45
    • /
    • 2016
  • Fruit bagging has been widely practiced in peach cultivation to produce high quality and unblemished fruit. Moreover, fruit bagging has been utilized to study the effect of shading on the quality of fruit. We conducted a proteomic analysis on peach fruit to elucidate the biochemical and physiological events that characterize the effect of bagging treatment. Comparative analysis of 2D electrophoresis (2-DE) gels showed that relative protein levels differed significantly at 125 DAFB (days after full bloom), as well as at 133 DAFB in fruit that had been bagged until 125 DAFB, followed by exposure to sunlight. Most of the proteins with altered expression were identified by MALDI TOF/TOF. Twenty-one proteins with differential expression among the groups were identified at 125 DAFB, while thirty proteins with differential expression among the groups were identified at 133 DAFB. The analysis revealed that expression of proteins involved in photosynthesis, stress responses, and biochemical processes influencing metabolism were altered during bagging treatment, suggesting that regulation of the synthesis of carbohydrates, amino acids, and proteins influenced fruit size, solid/acid ratio, and peel color. This work provides the first characterization of proteomic changes in peach in response to fruit bagging treatment. Identifying and tracking protein changes may allow us to better understand the mechanisms underlying the effects of bagging treatment.

Production of ʟ-Theanine Using Escherichia coli Whole-Cell Overexpressing γ-Glutamylmethylamide Synthetase with Baker's Yeast

  • Yang, Soo-Yeon;Han, Yeong-Hoon;Park, Ye-Lim;Park, Jun-Young;No, So-young;Jeong, Daham;Park, Saerom;Park, Hyung Yeon;Kim, Wooseong;Seo, Seung-Oh;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.785-792
    • /
    • 2020
  • ʟ-Theanine, found in green tea leaves has been shown to positively affect immunity and relaxation in humans. There have been many attempts to produce ʟ-theanine through enzymatic synthesis to overcome the limitations of traditional methods. Among the many genes coding for enzymes in the ʟ-theanine biosynthesis, glutamylmethylamide synthetase (GMAS) exhibits the greatest possibility of producing large amounts of production. Thus, GMAS from Methylovorus mays No. 9 was overexpressed in several strains including vectors with different copy numbers. BW25113(DE3) cells containing the pET24ma::gmas was selected for strains. The optimal temperature, pH, and metal ion concentration were 50℃, 7, and 5 mM MnCl2, respectively. Additionally, ATP was found to be an important factor for producing high concentration of ʟ-theanine so several strains were tested during the reaction for ATP regeneration. Baker's yeast was found to decrease the demand for ATP most effectively. Addition of potassium phosphate source was demonstrated by producing 4-fold higher ʟ-theanine. To enhance the conversion yield, GMAS was additionally overexpressed in the system. A maximum of 198 mM ʟ-theanine was produced with 16.5 mmol/l/h productivity. The whole-cell reaction involving GMAS has greatest potential for scale-up production of ʟ-theanine.

Synthesis of Nitrogen-Doped Porous Carbon Fibers Derived from Coffee Waste and Their Electrochemical Application (커피 폐기물 기반의 질소가 포함된 다공성 탄소 섬유의 제조 및 전기화학적 응용)

  • Dong Hyun Kim;Min Sang Kim;Suk Jekal;Jiwon Kim;Ha-Yeong Kim;Yeon-Ryong Chu;Chan-Gyo Kim;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • In this study, coffee waste was recycled into nitrogen-doped porous carbon fibers as an active material for high-energy EDLC (Electric Double Layer Capacitors). The coffee waste was mixed with polyvinylpyrrolidone and dissolved into dimethylformamide. The mixture was then electrospun to fabricate coffee waste-derived nanofibers (Bare-CWNF), and carbonization process was followed under a nitrogen atmosphere at 900℃. Similar to Bare-CWNF, the as-synthesized carbonized coffee waste-derived nanofibers (Carbonized-CWNF) maintained its fibrous form while preserving the composition of nitrogen. The electrochemical performance was analyzed for carbonized coffee waste (Carbonized-CW)-, carbonized PAN-derived nanofibers (Carbonized-PNF)-, and Carbonized-CWNF-based electrodes in the operating voltage window of -1.0-0.0V, Among the electrodes, Carbonized-CWNF-based electrodes exhibited the highest specific capacitance of 123.8F g-1 at 1A g-1 owing to presence of nitrogen and porous structure. As a result, nitrogen-contained porous carbon fibers synthesized from coffee waste showed excellent electrochemical performance as electrodes for high-energy EDLC. The experimental designed in this study successfully demonstrated the recycling of the coffee waste, one of the plant-based biomass that causes the environmental pollution into high-energy materials, also, attaining the ecofriendliness.

Biochemical and Molecular Biological Studies on the DNA Replication of Bacteriophage T7 (Bacteriophage T7의 유전자 복제기작에 관한 생화학적, 분자생물학적 특성 연구)

  • KIM Young Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.209-218
    • /
    • 1995
  • Bacteriophage T7 gene 2.5 protein, a single-stranded DNA binding protein, has been implicated in T7 DNA replication, recombination, and repair. Purified gene 2.5 protein has been shown to interact with the phage encoded gene 5 protein (DNA polymerase) and gene 4 proteins (helicase and primase) and stimulates their activities. Genetic analysis of T7 phage defective in gene 2.5 shows that the gene 2.5 protein is essential for T7 DNA replication and growth. T7 phage that contain null mutants of gene 2.5 were constructed by homologous recombination. These mutant phage $(T7\Delta2.5)$ cannot grow in Escherichia coli. After infection of E. coli with $T7\Delta2.5$, host DNA synthesis is shut off, and $T7\Delta2.5$ DNA synthesis is reduced to less than $1\%$ of wild-type phage DNA synthesis (Kim and Richardson, 1993, Proc. Natl. Aca. Sci. USA, 90, 10173-10177). A truncated gene 2.5 protein $(GP2.5-\Delta21C)$ deleted the 21 carboxyl terminal amino acids was constructed by in vitro mutagenesis. $GP2.5-\Delta21C$ cannot substitute for wild-type gene 2.5 protein in vivo; the phage are not viable and exhibit less than $1\%$ of the DNA synthesis observed in wild-type phage-infected cells. $GP2.5-\Delta21C$ has been purified to apparent homogeneity from cells overexpressing its cloned gene. Purified $GP2.5-\Delta21C$ does not physically into「act with T1 gene 4 protein as measured by affinity chromatography and immunoblot analysis. The mutant protein cannot stimulate T7 gene 4 protein activity on RNA-primed DNA synthesis and primer synthesis. These results suggest that C-terminal domain of gene 2.5 protein is essential for protein-protein interactions.

  • PDF

EFFECT OF ZIZYPHI FRUCTUS EXTRACT ON THE BIOLOGICAL ACTIVITY OF GINGIVAL FIBROBLAST (대조 추출물분획이 치은 섬유아세포의 생물학적 활성화에 미치는 영향)

  • Yang, Chang-Ho;Lee, Yong-Moo;Cho, Ki-Yeong;Bae, Ki-Hwan;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.1
    • /
    • pp.144-154
    • /
    • 1994
  • Final goal of periodontal treatment is to reconstruct the destructed periodontal tissue as well as to remove the necrotic pathologic elements. The purpose of this study is to investigate on the effect of Zizyphi extract to the inhibitory ability on collagenolytic activity of P gingivalis, biologic activity of gingival fibroblasts, and on the collagen and protein synthesis of gingival fibroblasts. Gingival fibroblast from giniva of first bicuspids from patient for orthodontic treatment were used and cultured. For the measurement of inhibitory ability of collagenolytic activity, crude enzyme was extracted and used on the basis of modified Ono's method. On the inhibition of collagenolytic enzyme from herbal extracts, collagenokit CLN-100 were used. The cellular activity of gingival fibroblast, were studied using MTT solution and measured optical density on 570mm by ELISA reader. To measure the effects on the ability of whole protein and collagen synthesis, cell membrane was destructed with ultrasonic grinder after culturing, centrifuged and counted by liquid scintilation counter. The inhibitory effects on producing of $IL-l{\beta}$ by monocyte, after promotion of producing $IL-l{\beta}$ by LPS, were compared with the mixture of herbal extracts and other drugs using thymocyte stimulation assay. About inhibitory effects of $PGF_2$. by gingival fibroblasts, herbal extract was compared with the addition of the other control groups using enzyme imunoassay. On the inhibition of collagenolytic activity by P. gingivalis, benzene extracts showed the most efficient inhibitory effects among the $19{\mu}g/ml$ of the compared extracts and 40.5% by Tetracycline. On the cellular activity promoting effects, compared extracts showed a bit of more effects than PDGF of $100{\mu}g/ml$ concentration and IGF of $20{\mu}g/ml$ concentration. All of the PDGF, IGF, Zizyphi Fructus extract should increase in collagen synthesis, but especially 70% ethylalcohol extracts of Zizyphi Fructus showed comparably high effects among the compared extracts. Effects on whole protein synthesis were slightly increased on every extract but especially 70% ethylalcohol extract showed significantly effective than any other estract. On the inhibitory effects of Zizyphi Fructus $IL-l{\beta}$ production by monocyte, compared extracts showed 70% of highly inhibitory effect than that of 60% inhibition effects on controlled group and each extracts showed no significant difference. In $PGF_2$ production inhibitroy effect of Zizyphi Fructus gingival fibroblasts, Herbal extracts showed 70% of inhibition comparing with tat of 90.2% of controlled group, but each extracts showed similar effects excluding the $H_2O$ extracts. These results suggested that Zizyphi Fructus might be useful medicine for inhibition of inflammatory mediator including $IL-l{\beta}$ and $PGF_2$.

  • PDF

Biogenic Synthesis of Metallic Nanoparticles and Their Antibacterial Applications (금속 나노입자의 생체 합성과 항균적 적용)

  • Patil, Maheshkumar Prakash;Kim, Jong-Oh;Seo, Yong Bae;Kang, Min-jae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.862-872
    • /
    • 2021
  • Recent studies on synthesis of metallic nanomaterials such as silver (Ag), gold (Au), platinum (Pt), cerium (Ce), zinc (Zn), and copper (Cu) nanoparticles (NPs) using plants and microbes are attracted researchers for their wide range of applications in the field of biomedical sciences. The plant contains abundant of bioactive contents such as flavonoids, alkaloids, saponins, steroids tannins and nutritionals components. Similarly, microbes produce bioactive metabolites, proteins and secretes valuable chemicals such as color pigments, antibiotics, and acids. Recently reported, biogenic synthesis of NPs in non-hazardous way and are promising candidates for biomedical applications such as antibacterial, antifungal, anti-cell proliferative and anti-plasmodia activity. All those activities are dose dependent, along with their shape and size also matters on potential of NPs. Microbes and plants are great source of metabolites, those useful in biomedical field, such metabolites or chemicals involved in synthesis of NPs in an ecofriendly way. NPs synthesized using microbes or plant materials are reveals more non-toxic, facile, and cost-effective compare to chemically synthesized NPs. In present review we are focusing on NPs synthesis using biological agents such as microbes (bacteria, fungi and algae) and plant, characterization using different techniques and their antibacterial applications on pathogenic Gram-positive and Gram-negative organisms.

Partial Purification of Factors for Differential Transcription of the rrnD Promoters for Ribosomal RNA Synthesis in Streptomyces coelicolor

  • Hahn, Mi-Young;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.534-540
    • /
    • 2007
  • The Streptomyces coelicolor A3(2) genome contains six operons (rrnA to F) for ribosomal RNA synthesis. Transcription from rrnD occurs from four promoters (p1 to p4). We found that transcripts from the p1 and p3 promoters were most abundant in vivo in the early exponential phase. However, at later phases of exponential and stationary growth, transcripts from the p1 promoter decreased drastically, with the p3 and p4 transcripts constituting the major forms. Partially purified RNA polymerase supported transcription from the p3 and p4 promoters, whereas pure reconstituted RNA polymerase with core enzyme (E) and the major vegetative sigma factor ${\sigma}^{HrdB}$ ($E{\cdot}{\sigma}^{HrdB}$) did not. In order to assess any potential requirement for additional factor(s) that allow transcription from the p3 and p4 promoters, we fractionated a partially purified RNA polymerase preparation by denaturing gel filtration chromatography. We found that transcription from the p3 and p4 promoters required factor(s) of about 30-35 kDa in addition to RNAP holoenzyme ($E{\cdot}{\sigma}^{HrdB}$). Therefore, transcription from the p3 and p4 promoters, which contain a consensus -10 region but no -35 for ${\sigma}^{HrdB}$ recognition, are likely to be regulated by transcription factor(s) that modulate RNA polymerase holoenzyme activity in S. coelicolor.