• Title/Summary/Keyword: Biological Synthesis

Search Result 1,240, Processing Time 0.024 seconds

Cloning and Expression of a cDNA AAPT3 Encoding Aminoalcoholphosphotransferase Isoform from Chinese Cabbage

  • Kim, Kwang-Soo;Park, Jong-Ho;Cho, Sung-Ho
    • Animal cells and systems
    • /
    • v.8 no.2
    • /
    • pp.105-109
    • /
    • 2004
  • Aminoalcoholphosphotransferase catalyzes the synthesis of phosphatidylcholine and phosphatidylethanolamine from diacylglycerol plus a CDP-aminoalcohol such as CDP-choline or CDP-ethanolamine. Previously we suggested the presence of possible isoforms of this enzyme from Chinese cabbage roots and now report the cDNA cloning and expression analysis of AAPT3 encoding a third isoform of aminoalcoholphosphotransferase (AAPT3). AAPT3 contains an open reading frame of 1,176 bp coding for a protein of 392 amino acids. It shares 96 and 95% identity with Chinese cabbage AAPT1 and AAPT2, respectively, at the deduced amino acid level. The results from reverse transcriptase-polymerase chain reaction analysis indicate that expression of AAPT3 is up-regulated by low temperature as well as AAPT1 and AAPT2.

Expression of Recombinant HBV Pol Proteins in HepG2 Cells

  • Cho, Ginam;Na, Seun-Gon;Suh, Se-Won;Jung, Gu-Hung
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.440-447
    • /
    • 2000
  • In this study HepG2 cells were used to express and purify HBV pol proteins. In order to facilitate purification of HBV pol proteins, HBV pol and its deletion mutants were fused to MBP (Maltose Binding Protein). As a result we successfully expressed and partially purified both wild type and mutant recombinant HBV pol proteins by using an amylose resin and anti-MBP antibody. In the case of wild type, the anti-MBP antibody detected three bands. One was full-length and the others were generated by proteolysis of the terminal domain region. The expressed MBP/POL proteins were localized both in the cytoplasm and in the perinuclear region. The purified proteins had polymerase activity toward an exogenous homo-polymer template. The MBP/POL protein also had DNA synthesis activity in vivo, since the MBP/POL expression construct was able to complement a HBV polymerase mutant in trans.

  • PDF

Chiral Pool Synthesis of N-Cbz-cis-(3R,4R)-3-methylamino-4-methylpiperidine from L-Malic acid

  • Hao, Bao-Yu;Liu, Jin-Qiang;Zhang, Wei-Han;Chen, Xin-Zhi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1371-1377
    • /
    • 2013
  • A new synthetic route to N-Cbz-cis-(3R,4R)-3-methylamino-4-methylpiperidine, key intermediate for CP-690,550, was disclosed with L-malic acid as the chiral pool starting material. The title compound was obtained in 16 steps with a total yield of 26% and more than 98% ee.

Analysis of Erythropoietin Glycoform Produced by Recombinant CHO Cells Using the Lectin-Blotting Technique

  • Chang, Kern-Hee;Kim, Kyung-Soo;Kim, Jung-Hoe
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.40-43
    • /
    • 1998
  • The glycosylation pattern of Erythropoietin (EPO), produced by recombinant CHO cells, was studied using the simple and rapid technique of 'Lectin-blotting'. In this experiment we used three different kinds of lectins, MAA(Maackia amurensis agglutinine), RCA(Ricinus communis agglutinine), and DSA(Datura stramonium agglutinine), which bind to the terminal sialic acid, galactose, and the N-acetyllactosamine chain respectively. The lectin-blotting technique was used to analyze the carbohydrate structure of EPO produced in the presence of two physiologically active chemical compounds, ammonium and chloroquine. The effect of the ammonium ion on the glycosylation of EPO was studied because it accumulated in the medium mainly as a by-product of glutamine matabolism. Ammonium chloride significantly inhibited the sialylation of the terminal galactose residue at concentrations of 8mM or more. Chloroquine, a potent inhibitor of glycosylation, inhibited terminal sialylation at concentrations of 100 and 200 $\mu$M, and at a concentration of 300 $\mu$M, also inhibited Nacetyllactosamine chain synthesis.

  • PDF

Synthesis and Biological Studies of Catechol Ether Type Derivatives as Potential Phosphodiesterase (PDE) IV Inhibitors

  • Rhee, Chung K.;Kim, Jong-Hoon;Suh, Byung-Chul;Xiang, Myung-Xik;Youn, Yong-Sik;Bang, Won-Young;Kim, Eui-Kyung;Shin, Jae-Kyu;Lee, Youn-Ha
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.202-207
    • /
    • 1999
  • New series of catechol ether type derivatives 5, 6 have been synthesized and applied to biological tests. Even though it is ap preliminary data, some of our target molecules show the promising result against PDE IV inhibition. SAR and biological studies with studies with synthetic compounds will be discussed in detail.

  • PDF

Structural and Morphological Alterations of Candida albicans Cells after Treatment with Atratoxin $B_1$ from Holothuria atra (Jaeger)

  • Long, K.L.;Darah, I.;Ibrahim, C.O.
    • Natural Product Sciences
    • /
    • v.4 no.3
    • /
    • pp.136-142
    • /
    • 1998
  • Atratoxin $B_1$ which was found to inhibit the growth of Candida albicans caused structural and morphological alteration of the cells. Increased accumulation of vesicles and membranous bodies in the cytoplasm, and alterations of the cell membrane and cell wall were most obvious. Sequential lytic events of the cells eventually resulted in complete disintegration of the cytoplasmic structures. These results suggested that atratoxin $B_1$ functioned by either blocking the biosynthetic step during cell wall synthesis, altering cell wall metabolism or dissolution of the cell organelles. These changes caused a progressive destruction of the cell wall leading to cell lysis.

  • PDF

The Effect of Roots Extract from Potentilla chinensis as Cosmeceutical Material (화장품 소재로써의 딱지꽃(Potentilla chinensis) 뿌리 추출물의 효과)

  • You, Jae Chon;Jung, Hae Soo;Kim, Hyoung Shik;Lee, Jeong Hun;Moh, Sang Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.13-17
    • /
    • 2016
  • As natural plant-based industry has been expanded, the use of oriental medicinal plants as cosmeceutical material received a lot of attentions in the cosmetic industry. Among various medicinal plants, Potentilla chinensis have drawn interests for its biological effects. Although several attempts were tried to study its biological effect as medicinal plant, only limited results were reported to evaluate its biological effect as cosmeceutical material. In this study, we examined the possibility of root extract from Potentilla chinensis as a cosmeceutical material because the root part has been reported to have several kinds of health promoting effects. After extraction of roots, biological evaluation including anti-inflammation, anti-wrinkle, whitening effect and moisturizing effect was performed. As a result, the root extract showed remarkable biological activities through stimulating synthesis of elastin and aquaporin-3, and inhibiting melanin synthesis, cyclooxygenase-2 expression and expression of metallopeptidase-1.

The Growth and EPA Synthesis of Shewanella oneidensis MR-1 and Expectation of EPA Biosynthetic Pathway

  • Jeong, Young-Su;Song, Sang-Kyu;Lee, Su-Jin;Hur, Byung-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.127-133
    • /
    • 2006
  • Shewanella oneidensis MR-1 has the ability to inhale certain metals and chemical compounds and exhale these materials in an altered state; as a result, this microorganism has been widely applied in bioremediation protocols. However, the relevant characteristics of cell growth and biosynthesis of PuFAs have yet to be thoroughly investigated. Therefore, in this study, we have attempted to characterize the growth and fatty acid profiles of S. oneidensis MR-1 under a variety of temperature conditions. The fastest growth of S. oneidensis MR-1 was observed at $30^{\circ}C$, with a specific growth rate and doubling time of $0.6885h^{-1}\;and\;1.007 h$. The maximum cell mass of this microorganism was elicited at a temperature of $4^{\circ}C$. The eicosapentaenoic acid (EPA) synthesis of S. oneidensis MR-1 was evaluated under these different culture temperatures. S. oneidensis MR-1 was found not to synthesize EPA at temperatures in excess of $30^{\circ}C$, but was shown to synthesize EPA at temperatures below $30^{\circ}C$. The EPA content was found to increase with decreases in temperature. We then evaluated the EPA biosynthetic pathway, using a phylogenetic tree predicted on 16s rRNA sequences, and the homology of ORFs between S. oneidensis MR-1 and Shewanella putrefaciens SCRC-2738, which is known to harbor a polyketide synthase (PKS)-like module. The phylogenetic tree revealed that MR-1 was very closely related to both Moritella sp., which is known to synthesize DHA via a PKS-like pathway, and S. putrefaciens, which has been reported to synthesize EPA via an identical pathway. The homology between the PKS-like module of S. putrefaciens SCRC-2738 and the entire genome of S. oneidensis MR-1 was also analyzed, in order to mine the genes associated with the PKS-like pathway in S. oneidensis MR-1. A putative PKS-like module for EPA biosynthesis was verified by this analysis, and was also corroborated by the experimental finding that S. oneidensis MR-1 was able to synthesize EPA without the expression of $dihomo-{\gamma}-linoleic$ acid (DGLA) and arachidonic acid (AA) formed during EPA synthesis via the FAS pathway.

The Importance of the Aging Time to Prepare Cu/ZnO/Al2O3 Catalyst with High Surface Area in Methanol Synthesis

  • Jung, Heon;Yang, Dae-Ryook;Joo, Oh-Shim;Jung, Kwang-Deog
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1241-1246
    • /
    • 2010
  • Ternary Cu/ZnO/$Al_2O_3$ catalysts were prepared by a co-precipitation method. The precursor structures were monitored during the aging. The first precipitate structure was amorphous georgeite, which transformed into the unknown crystalline structure. The transition crystalline structure was assigned to the crystalline georgeite, which was suggested with elemental analysis, IR and XRD. The final structure of precursors was malachite. The Cu surface area of the resulting Cu/ZnO/$Al_2O_3$ was maximized to be 30.6 $m^2$/g at the aging time of 36 h. The further aging rapidly decreased Cu surface areas of Cu/ZnO/$Al_2O_3$. ZnO characteristic peaks in oxide samples almost disappeared after 24 h aging, indicating that ZnO was dispersed in around bulk CuO. TOF of the prepared catalysts of the Cu surface area ranges from 13.0 to 30.6 $m^2/g_{cat}$ was to be 2.67 ${\pm}$ 0.27 mmol/$m^2$.h in methanol synthesis at the condition of $250^{\circ}C$, 50 atm and 12,000 mL/$g_{cat}$. h irrespective of the XRD and TPR patterns of CuO and ZnO structure in CuO/ZnO/$Al_2O_3$. The pH of the precipitate solution during the aging time can be maintained at 7 by $CO_2$ bubbling into the precipitate solution. Then, the decrease of Cu surface area by a long aging time can be prevented and minimize the aging time to get the highest Cu surface area.