• 제목/요약/키워드: Biological Signal Monitoring

검색결과 88건 처리시간 0.025초

휴대용 수면 패턴 모니터링을 위한 복합 fNIRS-EEG 시스템 개발 (Development of a Hybrid fNIRS-EEG System for a Portable Sleep Pattern Monitoring Device)

  • 김경한;우성우;하성훈;박금룡;사커 엠디 샤힌;박배정;김창세
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권6호
    • /
    • pp.392-403
    • /
    • 2023
  • This study presents a new hybrid fNIRS-EEG system to meet the demand for a lightweight and low-cost sleep pattern monitoring device. For multiple-channel configuration, a six-channel electroencephalogram (EEG) and a functional near-infrared spectroscopy (fNIRS) system with eight photodiodes (PD) and four dual-wavelength LEDs are designed. To enhance the convenience of signal measurement, the device is miniaturized into a patch-like form, enabling simultaneous measurement on the forehead. Due to its fully integrated functionality, the developed system is advantageous for performing sleep stage classification with high-temporal and spatial resolution data. This can be realized by utilizing a two-dimensional (2D) brain activation map based on the concentration changes in oxyhemoglobin and deoxyhemoglobin during sleep stage transitions. For the system verification, the phantom model with known optical properties was tested at first, and then the sleep experiment for a human subject was conducted. The experimental results show that the developed system qualifies as a portable hybrid fNIRS-EEG sleep pattern monitoring device.

디지털 래디오그라피의 신호 및 잡음 특성에 대한 방사선 영향에 관한 연구 (Investigation of Radiation Effects on the Signal and Noise Characteristics in Digital Radiography)

  • 김호경;조민국
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권6호
    • /
    • pp.756-767
    • /
    • 2007
  • For the combination of phosphor screens having various thicknesses and a photodiode array manufactured by complementary metal-oxide-semiconductor (CMOS) process, we report the observation of image-quality degradation under the irradiation of 45-kVp spectrum x rays. The image quality was assessed in terms of dark pixel signal, dynamic range, modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). For the accumulation of the absorbed dose, the radiation-induced increase both in dark signal and noise resulted in the gradual reduction in dynamic range. While the MTF was only slightly affected by the total ionizing dose, the noise power in the case of $Min-R^{TM}$ screen, which is the thinnest one among the considered screens in this study, became larger as the total dose was increased. This is caused by incomplete correction of the dark current fixed-pattern noise. In addition, the increase tendency in NPS was independent of the spatial frequency. For the cascaded model analysis, the additional noise source is from direct absorption of x-ray photons. The change in NPS with respect to the total dose degrades the DQE. However, with carefully updated and applied correction, we can overcome the detrimental effects of increased dark current on NPS and DQE. This study gives an initial motivation that the periodic monitoring of the image-quality degradation is an important issue for the long-term and healthy use of digital x-ray imaging detectors.

커프 신경전극을 위한 저잡음 증폭기 시스템 개발 (Development of a Low-Noise Amplifier System for Nerve Cuff Electrodes)

  • 송강일;추준욱;서준교;최귀원;유선국;윤인찬
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권1호
    • /
    • pp.45-54
    • /
    • 2011
  • Cuff electrodes have a benefit for chronic electroneurogram(ENG) recording while minimizing nerve damage. However, the ENG signals are usually contaminated by electromyogram(EMG) activity from the surrounding muscle, the thermal noise generated within the source resistance, and the electric noise generated primarily at the first stage of the amplifier. This paper proposes a new cuff electrode to reduce the interference of EMG signals. An additional middle electrode was placed at the center of cuff electrode. As a result, the proposed cuff electrode achieved a higher signal-to-interference ratio compared to the conventional tripolar cuff. The cuff electrode was then assembled together with closure, headstage, and hermetic case including electronic circuits. This paper also presents a lownoise amplifier system to improve signal-to-noise ratio. The circuit was designed based on the noise analysis to minimize the electronic noise. The result shows that the total noise of the amplifier was below $1{\mu}V_{rms}$ for a cuff impedance of $1\;k{\Omega}$ and the common-mode rejection ratio was 115 dB at 1 kHz. In the current study, the performance of nerve cuff electrode system was evaluated by monitoring afferent nerve signals under mechanical stimuli in a rat animal model.

착용형 센서와 헬멧을 이용한 작업자의 작업환경 모니터링 (Work Environment Monitoring of Workers Using Wearable Sensor and Helmet)

  • 구예진;김종진;정완영
    • 융합신호처리학회논문지
    • /
    • 제20권2호
    • /
    • pp.91-98
    • /
    • 2019
  • 해상과 같이 고립된 장소에서 발생하는 작업자의 사고는 일반적인 건설 사고와는 달리 통신의 제한 등의 문제로 구조에 어려움이 따른다. 또한 CCTV의 부재로 인한 사고 현장의 수색에 어려움이 생긴다. 이러한 문제점을 개선하기 위해 이 논문에서는 작업 현장에서 필수적으로 착용해야 하는 안전모에 IoT 기술을 접목한 장치를 제안한다. 제안 장치는 기존의 안전모에 심박센서, 체온 센서, 가속도 센서 및 카메라 센서를 부착하여 설계 및 구현하며, 사용자 및 관제 센터에서 작업자의 상태를 모니터링 할 수 있게 한다. 또한 작업자에게 비정상적인 생체 신호나 낙상이 발생하면 영상을 관제센터로 전송한다. 제안 시스템을 활용하면 작업자의 상태를 실시간으로 확인할 수 있으므로 작업자의 사고에 대해 빠른 대처를 할 수 있는 장점을 가진다.

녹색광을 이용한 반사형 광용적맥파측정기의 주변광 간섭시 신호측정 (The Verification of Photoplethysmography Using Green Light that Influenced by Ambient Light)

  • 장기영;고현철;이정직;윤영로
    • 대한의용생체공학회:의공학회지
    • /
    • 제35권5호
    • /
    • pp.125-131
    • /
    • 2014
  • The purpose of this study is to verify the utility of reflected photoplethysmography sensor using two green light emitting diodes that influenced by ambient light. Recently it has been studied that green light emitting diode is suitable for light source of reflected photoplethysmography sensor at low temperature and high temperature. Another study showed that, green light is better for monitoring heart rate during motion than led light. However, it has a bad characteristic about ambient light noise. To verify the utility of reflected photoplethysmography sensor using green light emitting diode, this study measures the photoplethysmography signal that is distorted by ambient light and will propose a solution. This study has two parts of research method. One is measurement system that composed sensor and board. The sensor is made up PE-foam and Non-woven fabric for flexible sensor. The photoplethysmography signal is measured by measurement board that composed high-pass filter, low-pass filter and amplifier. Ambient light source is light bulb and white light emitting diode that has three steps brightness. Photoplethysmography signal is measured with lead II electrocardiography signal at the same time and it is measured at the finger and radial artery for 1 minute, 1000 Hz sampling rate. The lead II electrocardiography signal is a standard signal for heart rate and photoplethysmography signal that measured at the finger is a standard signal for waveform. The test is repeated 3 times using three sensor. The data is processed by MATLAB to verify the utility by comparing the correlation coefficient score and heart rate. The photoplethysmography sensor using two green light emitting diodes is shown better utility than using one green light emitting diode and red light emitting diode at the ambient light. The waveform and heart rate that measured by two green light emitting diodes are more identical than others. The amount of electricity used is less than red light emitting diode and error peak detectability factor is the lowest.

나노웹 섬유형 전극 인터페이스와 KHU Mark2 EIT 시스템을 이용한 생체신호 동기 도전율 영상법 (Gated Conductivity Imaging using KHU Mark2 EIT System with Nano-web Fabric Electrode Interface)

  • 김태의;김현지;위헌;오동인;우응제
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권1호
    • /
    • pp.39-46
    • /
    • 2012
  • Electrical impedance tomography(EIT) can produce functional images with conductivity distributions associated with physiological events such as cardiac and respiratory cycles. EIT has been proposed as a clinical imaging tool for the detection of stroke and breast cancer, pulmonary function monitoring, cardiac imaging and other clinical applications. However EIT still suffers from technical challenges such as the electrode interface, hardware limitations, lack of animal or human trials, and interpretation of conductivity variations in reconstructed images. We improved the KHU Mark2 EIT system by introducing an EIT electrode interface consisting of nano-web fabric electrodes and by adding a synchronized biosignal measurement system for gated conductivity imaging. ECG and respiration signals are collected to analyze the relationship between the changes in conductivity images and cardiac activity or respiration. The biosignal measurement system provides a trigger to the EIT system to commence imaging and the EIT system produces an output trigger. This EIT acquisition time trigger signal will also allow us to operate the EIT system synchronously with other clinical devices. This type of biosignal gated conductivity imaging enables capture of fast cardiac events and may also improve images and the signal-to-noise ratio (SNR) by using signal averaging methods at the same point in cardiac or respiration cycles. As an example we monitored the beat by beat cardiac-related change of conductivity in the EIT images obtained at a common state over multiple respiration cycles. We showed that the gated conductivity imaging method reveals cardiac perfusion changes in the heart region of the EIT images on a canine animal model. These changes appear to have the expected timing relationship to the ECG and ventilator settings that were used to control respiration. As EIT is radiation free and displays high timing resolution its ability to reveal perfusion changes may be of use in intensive care units for continuous monitoring of cardiopulmonary function.

Hep3B 간암세포에서 개똥쑥 추출물에 의한 Cell Cycle Arrest 효과 (Cell Cycle Arrest Effects by Artemisia annua Linné in Hep3B Liver Cancer Cell)

  • 김은지;김근태;김보민;임은경;김상용;하성호;김영민;유제근
    • KSBB Journal
    • /
    • 제30권4호
    • /
    • pp.175-181
    • /
    • 2015
  • Cells proliferate via repeating process that growth and division. This process is G1, S, G2 and M four phases consists. Monitoring the progression of the cell cycle is a specific step that to be a continuous process is repeated to adjust the start of the next step. At this time, this process is called a Checkpoint. Currently, there are three known checkpoints that G1-S phase, G2-M phase, and the M phase. In this study, we confirmed that cell cycle arrest effects by ethanol extracts of Artemisia annua Linne (AAE) in Hep3B liver cancer cells. AAE was regulated proteins which involved in cell cycle such as pAkt, pMDM2, p53, p21, pCDK2 (T14/Y15). AAE induced cell cycle arrest in G1 checkpoint through phosphorylation of CDK2. Akt and p53 upstream is inhibited by AAE and p53 activated by non-activated pMDM2, p53 inhibitor. Thereby, activated p53 is transcript to p21 and activated p21 protein is combined with Cyclin E-pCDK2 complex. Therefore, we confirmed that AAE-induced cell cycle arrest was occurred by p21-Cyclin E-pCDK2 complex by inhibition of pAkt signal. Because of this cell cycle can't pass to S phase from G1 phase.

분자영상연구를 위한 분자생물학 기법 소개 (Introduction To Basic Molecular Biologic Techniques for Molecular Imaging Researches)

  • 강주현
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.115-120
    • /
    • 2004
  • Molecular imaging is a rapidly growing field due to the advances in molecular biology and imaging technologies. With the introduction of imaging reporter genes into the cell, diverse cellular processes can be monitored, quantified and imaged non-invasively in vivo. These precesses include the gene expression, protein-protein interactions, signal transduction pathways, and monitoring of cells such as cancer cells, immune cells, and stem cells. In the near future, molecular imaging analysis will allow us to observe the incipience and progression of the disease. These will make us easier to give a diagnosis in the early stage of intractable diseases such as canter, neuro-degenerative disease, and immunological disorders. Additionally, molecular imaging method will be a valuable tool for the real-time evaluation of cells in molecular biology and the basic biological studies. As newer and more powerful molecular imaging tools become available, it will be necessary to corporate clinicians, molecular biologists and biochemists for the planning, interpretation, and application of these techniques to their fullest potential. in order for such a multidisciplinary team to be effective, it is essential that a common understanding of basic biochemical and molecular biologic techniques is achieved. Basic molecular techniques for molecular imaging methods are presented in this paper.

공기도관을 사용하는 경막외강 자동탐지기구 (Epidural Space Identification Device Using Air-filled Catheter)

  • 강재환;김현식;김경아;김상태;배진호;임승운;차은종
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권1호
    • /
    • pp.9-13
    • /
    • 2003
  • 경막외마취는 전신마취가 불필요하므로 널리 활용되는 마취술이다. 그러나 경막외마취 시술시 천자침이 경막외강 내에 정확하게 위치하지 않으면 각종 부작용이 발생하므로 시술자의 세심한 주의뿐만 아니라 상당한 수준의 숙달이 필요하다. 본 연구에서는 천자침이 연결된 도관 내의 압력 변화를 범용 압력센서로 연속 계측함으로써 침이 경막외강 내로 진입하는 순간을 자동탐지하는 자동화된 저항소실법을 개발하였다. 17G Tuohy 침을 황인대까지 전진시킨 후 침에 공기도관을 연결하고 공기도관에 연결된 압력센서로 압력신호를 추출하여 적절히 증폭ㆍ필터링한 후 역치감지회로가 경막외강의 진입순간을 감지하도록 전자회로를 설계ㆍ제작함으로써 저항소실법을 자동화할 수 있었다. 소량의 공기 주입으로 도관 내의 압력을 50∼100mmHg까지 녹인 후 짐을 천천히 전진시키며 압력변화신호를 10개의 녹색 발광다이오드로 연속 표시하였고 압력이 20mmHg 이하로 하강하는 순간을 경막외강 진입시점으로 인식하여 시술자를 위해 경보를 울리는 보조기기의 형태로 구현하였다. 자체 시뮤레이션을 거친 후, 경막 외마취 시술이 예정된 환자 ,30명을 대상으로 자동화된 보조기기를 사용하여 시술하였고 수동적인 저항소실법을 병행하는 임상실험을 통하여 경막외 마취시술의 성공여부를 판정하였다. 본 기기의 도움으로 첫 번째 시도에서의 마취성공률은 83%이었고 두 번째 시도에서는 모두(100%) 성공하였으며 시술 중 주입된 공기의 용적은 1ml이내로써 별는 부작용이나 합병증은 없었으므로 본 연구의 유용성이 입증되었다. 본 연구의 자동화된 저항소실법은 공기도관을 사용하였으므로 감염의 가능성도 최소화된다고 볼 수 있었으며, 따라서 편리하고 안전한 경막외마취 시술이 가능할 것으로 판단된다.

MALDI-MS-Based Quantitative Analysis of Bioactive Forms of Vitamin D in Biological Samples

  • Ahn, Da-Hee;Kim, Hee-jin;Kim, Seong-Min;Jo, Sung-Hyun;Jeong, Jae-Hyun;Kim, Yun-Gon
    • Korean Chemical Engineering Research
    • /
    • 제58권1호
    • /
    • pp.106-112
    • /
    • 2020
  • Analyzing vitamin D levels is important for monitoring health conditions because vitamin D deficiency is associated with various diseases such as rickets, osteomalacia, cardiovascular disorders and some cancers. However, vitamin D concentration in the blood is very low with optimal level of 75 nmol/L, making quantitative analysis difficult. The objective of this study was to develop a highly sensitive analysis method for vitamin D using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS). 25-hydroxyvitamin D (25(OH)D), which has been used as an indicator of vitamin D metabolites in human biofluids was chemically derivatized using a secosteroid signal enhancing tag (SecoSET) with powerful dienophile and permanent positive charge. The SecoSET-derivatized 25(OH)D provided good linearity (R2 > 0.99) and sensitivity (limit of quantitation: 11.3 fmol). Chemical derivatization of deuterated 25-hydroxyvitamin D3 (d6-25(OH)D3) with SecoSET enabled absolute quantitative analysis using MALDI-MS. The highly sensitive method could be successfully applied into monitoring of quantitative changes of bioactive vitamin D metabolites after treatment with ketoconazole to inhibit 1α-hydroxylase reaction related to vitamin D metabolism in human breast cancer cells. Taken together, we developed a MALDI-MS-based platform that could quantitatively analyze vitamin D metabolites from cell products, blood and other biofluids. This platform may be applied to monitor various diseases associated with vitamin D deficiency such as rickets, osteomalacia and breast cancer.