• 제목/요약/키워드: Biological Signal Monitoring

검색결과 88건 처리시간 0.02초

The Modeling of the Differential Measurement of Air Pressure for Non-intrusive Sleep Monitoring Sensor System

  • Chee, Young-Joon;Park, Kwang-Suk
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권6호
    • /
    • pp.373-381
    • /
    • 2005
  • The respiratory and heart beat signals are the fundamental physiological signals for sleep monitoring in the home. Using the air mattress sensor system, the respiration and heart beat movements can be measured without any harness or sensor on the subject's body which makes long term measurement difficult and troublesome. The differential measurement technique between two air cells is adopted to enhance the sensitivity. The concept of the balancing tube between two air cells is suggested to increase the robustness against postural changes during the measurement period. With this balancing tube, the meaningful frequency range could be selected by the pneumatic filter method. The mathematical model for the air mattress and balancing tube was suggested and the validation experiments were performed for step and sinusoidal input. The results show that the balancing tube can eliminate the low frequency component between two cells effectively. This technique was applied to measure the respiration and heart beat on the bed, which shows the potential applications for sleep monitoring device in home. With the analysis of the waveform, respiration intervals and heart beat intervals were calculated and compared with the signal from conventional methods. The results show that the measurement from air mattress with balancing tube can be used for monitoring respiration and heart beat in various situations.

광용적맥파 신호를 이용한 수면 중 호흡 추정 (Estimation of Respiration Using Photoplethysmograph During Sleep)

  • 박종욱;이전;이효기;김호중;이경중
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권3호
    • /
    • pp.105-110
    • /
    • 2013
  • Respiratory signal is one of the important physiological information indicating the status and function of the body. Recent studies have provided the possibility of being able to estimate the respiratory signal by using a change of PWV(pulse width variability), PRV(pulse rate variability) and PAV(pulse amplitude variability) in the PPG (photoplethysmography) signal during daily life. But, it is not clear whether the respiratory monitoring is possible even during sleep. Therefore, in this paper, we estimated the respiration from PWV, PRV and PAV of PPG signals during sleep. In addition, respiration rates of the estimated respiration signal were calculated through a time-frequency analysis, and errors between respiration rates calculated from each parameter and from reference signal were evaluated in terms of 1 sec, 10 sec and 1 min. As a result, it showed the errors in PWV(1s: $36.38{\pm}37.69$ mHz, 10s: $36.53{\pm}38.16$ mHz, 60s: $30.35{\pm}38.72$ mHz), in PRV(1s: $1.45{\pm}1.38$ mHz, 10s: $1.44{\pm}1.37$ mHz, 60s: $0.45{\pm}0.56$ mHz), and in PAV(1s: $1.05{\pm}0.81$ mHz, 10s: $1.05{\pm}0.79$ mHz, 60s: $0.56{\pm}0.93$ mHz). The errors in PRV and PAV are lower than that of PWV. Finally, we concluded that PRV and PAV are more effective than PWV in monitoring the respiration in daily life as well as during sleep.

원격측정장치를 이용한 설치류의 생체신호 측정 및 분석 (Measurement and Analysis of Rodent Biological Signals using Telemetry System)

  • 김창환;허경행
    • 한국군사과학기술학회지
    • /
    • 제14권6호
    • /
    • pp.1159-1165
    • /
    • 2011
  • Telemetry techniques of rats have been used for assessing safety pharmacology of drugs and chemicals. Biological signals including blood pressure and heart rate measured under anesthesia were significantly different from those obtained under normal conditions. The stress of restraint in awake animals can also affect the accuracy of physiological evaluation. This paper details the surgery required to allow key cardiovascular parameters to be determined. The telemetric measurement of cardiovascular parameters such as blood pressure, heart rate, electrocardiograph(ECG) established. We carried out the continuous monitoring of cardiovascular parameters using the telemetry system in F344 rats. During the measurement, no significant changes were observed in the heart rate and blood pressure. ECG signals and body temperature were also constant during the measurement of biological signals. With the results of this study, we conclude that this telemetry system can be applied usefully for the assesment of biological parameters in the rats.

DSP 프로세서를 이용한 태아심음 및 자궁수축감시장치의 개발 (The development of Fetal Heart Rate monitoring system based on DSP processor)

  • 장동표;김강호;이용희;이응구;박문일;이두수;김선일
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 춘계학술대회
    • /
    • pp.320-324
    • /
    • 1996
  • Digital fetal monitoring system based on the personal computer combined with the digital signal processing board was implemented. The DSP board acquires and digitally processes ultrasound fetal Doppler signal for digital rectification, FIR filtering, autocorrelation function calculation, its peak detection and MEDIAN filtering. The personal computer interfaced with the DSP board is in charge of graphic display, hardcopy, data transmission and on-line analysis of fetal heart rate change including and variability. I used a recursive technique for autocorrelation function computation method and MEDIAN filter which can greatly reduce the amount of calculation and accuracy. I also implemented analysis algorithm of fetal heart rate change based on normal fetal sample data in order to exact diagnosis.

  • PDF

재활 훈련중인 환자를 위한 다채널 무구속 심박동수 모니터링 시스템 (Multi-channel Unconstrained Heart Rate Monitoring System for Exercising Rehabilitation Patients)

  • 조종만;최정현;박준호;남태우;은종민
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권3호
    • /
    • pp.191-197
    • /
    • 2008
  • This research focused on the development of wireless telemetry system that can monitor heart rates of multiple rehabilitation patients in real time without constraint. The whole system consists of the multiple patient's side devices (PSDs) and one central monitoring system (CMS). The PSD consists of a microphone, amplifier, filter, microcontroller, and RF (Radio Frequency) modem. In addition, the PSD was designed to be wearable and low power consumption. The CMS consists of an RF modem and general PC and it was designed to monitor heart rates from multiple patients simultaneously. The system warns an alarm signal when a patient's heart rate exceeds the pre-set range for each patient. This system can be useful to monitor the heart rate of exercising rehabilitation patients and control the patients condition and the exercising level.

착용형 단말에서 다수 생체신호의 동시 측정을 가능하게 하는 플러그인 모듈 (The Plug-in Module for Simultaneous Monitoring of Multi Bio-signal in Wearable Devices)

  • 최문식;최동진;강순주
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권4호
    • /
    • pp.195-200
    • /
    • 2016
  • 스마트 워치, 스마트 밴드 같은 웨어러블 디바이스가 개발됨에 따라, 웨어러블 디바이스 사용자의 건강상태를 측정할 수 있는 생체신호 모니터링 기술이 각광 받고 있다[1]. 하지만 한 개의 웨어러블 디바이스에서 여러 가지 생체신호를 측정하기 위해 웨어러블 디바이스에 여러 가지 생체신호 센서를 내장하게 되면 디바이스 자체 크기와 같은 제한적인 자원 측면에서 문제가 발생한다. 또한 새로운 생체신호 센서를 추가 할 때 문제가 발생한다. 본 논문에서는 웨어러블 디바이스 사용자의 요청이 있을 때 가속도 센서, ECG 센서, PPG 센서를 Cradle형태의 모듈에서 동작시킨 후 사용한 센서에서 측정되는 생체 신호를 실시간으로 수집하여 다른 웨어러블 디바이스로 전송할 수 있는 플러그인(Plug-in) 모듈인 Bio-Cradle을 제안한다. Bio-Cradle은 다른 웨어러블 디바이스에 플러그인하면, 디바이스의 종류에 무관하게 동기화 된 다수 생체신호를 전송할 수 있다. 즉 Bio-Cradle을 사용함으로써, 다수 생체신호의 동시 측정이 가능해지고, 웨어러블 디바이스 내부에 생체신호 센서를 내장 할 필요가 없어진다.

Ocean Scanning Multi-spectral Imager (OSMI) Pre-Launch Radiometric Performance Analysis

  • Cho, Young-Min
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.390-395
    • /
    • 1999
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring for the study of biological oceanography KOMPSAT will be launched in the middle of November this year. The radiometric performance of OSMI is analyzed for various gain settings in the viewpoint of the instrument developer for OSMI calibration and application based on its ground performance measurement data for 8 primary spectral bands of OSMI. The radiometric response linearity and dynamic range are analyzed for the image radiometric calibration and the estimation of OSMI image quality for the ocean remote sensing area. The dynamic range is compared with the nominal input radiance for the ocean and the land. The noise equivalent radiance (NER) corresponding to the instrument radiometric noise is compared with the radiometric resolution of signal digitization (1-count equivalent radiance). The best gain setting of OSMI for ocean monitoring is recommended. This analysis is considered to be useful for the OSMI mission and operation planning, the OSMI image data calibration, and users' understanding about OSMI image quality.

  • PDF

Applications of Microfluidics in the Agro-Food Sector: A Review

  • Kim, Giyoung;Lim, Jongguk;Mo, Changyeun
    • Journal of Biosystems Engineering
    • /
    • 제41권2호
    • /
    • pp.116-125
    • /
    • 2016
  • Background: Microfluidics is of considerable importance in food and agricultural industries. Microfluidics processes low volumes of fluids in channels with extremely small dimensions of tens of micrometers. It enables the miniaturization of analytical devices and reductions in cost and turnaround times. This allows automation, high-throughput analysis, and processing in food and agricultural applications. Purpose: This review aims to provide information on the applications of microfluidics in the agro-food sector to overcome limitations posed by conventional technologies. Results: Microfluidics contributes to medical diagnosis, biological analysis, drug discovery, chemical synthesis, biotechnology, gene sequencing, and ecology. Recently, the applications of microfluidics in food and agricultural industries have increased. A few examples of these applications include food safety analysis, food processing, and animal production. This study examines the fundamentals of microfluidics including fabrication, control, applications, and future trends of microfluidics in the agro-food sector. Conclusions: Future research efforts should focus on developing a small portable platform with modules for fluid handling, sample preparation, and signal detection electronics.

도플러 레이더를 이용한 수면 중의 심박 및 호흡 측정: 예비연구 (A Study on Measurement of Heartrate and Respiration during Sleep using Doppler Radar: Preliminary Study)

  • 임용규
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권5호
    • /
    • pp.264-270
    • /
    • 2017
  • A Doppler radar sensor was applied to detect respirations and heartbeats of persons who were lying on a bed. This study is preliminary study aiming at non-contact and non-intrusive respiration and heart rate monitoring during sleep in daily life. For the experiments, 10GHz Doppler radar with patch-type antenna was used and installed on the upper right and the distance between the body and the antenna was 1 m. The results show that each signal of respiration and heartbeat is observed in each frequency band however the frequency band and the waveform vary according to the subjects and the posture. The results show that the heartbeats can be detected with the peak detection in some frequency band. This study shows the feasibility of applying the Doppler radar to detection of heartbeat and respiration during sleep and further studies about heartbeat detection algorithm are required.

원격자동진단을 위한 ambulatory 심전도모니터링 시스템의 설계 (A Design of the Ambulatory ECG Monitoring System for the Remote Automatic Diagnosis)

  • 이경중
    • 대한의용생체공학회:의공학회지
    • /
    • 제12권4호
    • /
    • pp.277-284
    • /
    • 1991
  • This study describes the ambulatory ECG monitoring system for the remote autom atic diagnosis. System: tlardware is based on one chip microcomputer(80c31) and its peripherals which consists of A/D, EPROM, RAM, LCD display and two preamplifiers, Power circuits, control logic circuits. A/D converted data were differentiated and low pass filtered. The detection of QRS complex and R point were accomplished by software algorithm based on adaptive threshold computed on low pass fi:leered signal. Rhythm analysis is performed by RR interval and average RR interval. The performance of QRS detection algorithm is evaluated by using MIT/BIH data base. Using this system, the trends of the arrythmia during the long term could be saved and displayed.

  • PDF