Browse > Article
http://dx.doi.org/10.5307/JBE.2016.41.2.116

Applications of Microfluidics in the Agro-Food Sector: A Review  

Kim, Giyoung (National Institute of Agricultural Science)
Lim, Jongguk (National Institute of Agricultural Science)
Mo, Changyeun (National Institute of Agricultural Science)
Publication Information
Journal of Biosystems Engineering / v.41, no.2, 2016 , pp. 116-125 More about this Journal
Abstract
Background: Microfluidics is of considerable importance in food and agricultural industries. Microfluidics processes low volumes of fluids in channels with extremely small dimensions of tens of micrometers. It enables the miniaturization of analytical devices and reductions in cost and turnaround times. This allows automation, high-throughput analysis, and processing in food and agricultural applications. Purpose: This review aims to provide information on the applications of microfluidics in the agro-food sector to overcome limitations posed by conventional technologies. Results: Microfluidics contributes to medical diagnosis, biological analysis, drug discovery, chemical synthesis, biotechnology, gene sequencing, and ecology. Recently, the applications of microfluidics in food and agricultural industries have increased. A few examples of these applications include food safety analysis, food processing, and animal production. This study examines the fundamentals of microfluidics including fabrication, control, applications, and future trends of microfluidics in the agro-food sector. Conclusions: Future research efforts should focus on developing a small portable platform with modules for fluid handling, sample preparation, and signal detection electronics.
Keywords
Animal monitoring; Environmental monitoring; Food safety; Food processing; Microfluidics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adami, A., A. Mortari, E. Morganti and L. Lorenzelli. 2016. Microfluidic sample preparation methods for the analysis of milk contaminants. Journal of Sensors 2016:2385267.
2 Ahmad, B., E. Stride and M. Edirisinghe. 2012. Calcium Alginate Foams Prepared by a Microfluidic T-Junction System: Stability and Food Applications. Food and Bioprocess Technology 5(7):2848-2857.   DOI
3 Arevalo, F. J., A. M. Granero, H. Fernandez, J. Raba and M. A. Zon. 2011. Citrinin (CIT) determination in rice samples using a micro fluidic electrochemical immunosensor. Talanta 83:966-973.   DOI
4 Atalay, Y. T., S. Vermeir, D. Witters, N. Vergauwe, B. Verbruggen, P. Verboven, B. M. Nicolaï and J. Lammertyn. 2011. Microfluidic analytical systems for food analysis. Trends in Food Science & Technology 22:386-404.   DOI
5 Babrak, L., A. Lin, L. H. Stanker, J. McGarvey and R. Hnasko. 2015. Rapid Microfluidic Assay for the Detection of Botulinum Neurotoxin in Animal Sera. Toxins 8(1):13.
6 Bhatta, D., M. M. Villalba, C. L. Johnson, G. D. Emmerson, N. P. Ferris, D. P. King and C. R. Lowe. 2012. Rapid detection of foot-and-mouth disease virus with optical microchip sensors. Procedia Chemistry 6:2-10.   DOI
7 Becker, H. and C. Gartner. 2008. Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry 290:89-111.
8 Beyor, N., T. S. Seo, P. Liu and R. A. Mathies. 2008. Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection. Biomedical Microdevices 10(6):909-917.   DOI
9 Buchegger, W., C. Wagner, B. Lendl, M. Kraft and M. Vellekoop. 2011. A highly uniform lamination micromixer with wedge shaped inlet channels for time resolved infrared spectroscopy. Microfluidics and Nanofluidics 10:889-897.   DOI
10 Campbell, G. M. and E. Mougeot. 1999. Creation and characterization of aerated food products. Trends in Food Science & Technology 10:283-296.   DOI
11 Chang, H. C. 2006. Electro-kinetics: a viable micro-fluidic platform for miniature diagnostic kits. The Canadian Journal of Chemical Engineering 84(2):146-160.   DOI
12 Choudhury, D., D. van Noort, C. Iliescu, B. Zheng, K. L. Poon, S. Korzh, V. Korzh and H. Yu. 2012. Fish and Chips: a microfluidic perfusion platform for monitoring zebrafish development. Lab on a Chip 12:892-900.   DOI
13 Chen, J., D. Chen, Y. Xie, T. Yuan and X. Chen. 2013. Progress of Microfluidics for Biology and Medicine. Nano-Micro Letters 5(1):66-80.   DOI
14 Choi, E., B. Kim and J. Park. 2009. High-throughput microparticle separation using gradient traveling wave dielectrophoresis. Journal of Micromechanics and Microengineering 19:125014.   DOI
15 Cuadros, T. R., O. Skurtys and J. M. Aguilera. 2012. Mechanical properties of calcium alginate fibers produced with a microfluidic device. Carbohydrate Polymers 89(4):1198-1206.   DOI
16 Dong, Y., Y. Xu, Z. Liu, Y. Fu, T. Ohashi, Y. Tanaka, K. Mawatari and T. Kitamori. 2011. Rapid screening swine foot-and-mouth disease virus using micro-ELISA system. Lab on a Chip 11(13):2153-2155.   DOI
17 Hamon, M. O. A. Oyarzabal and J. W. Hong. 2013. Nanoliter/picoloter scale fluidic systems for food safety. In: Advances in applied nanotechnology for agriculture. eds. B. Park and M. Appell. pp. 145-165 Washington, DC: ACS.
18 Galarreta, B. C., M. Tabatabaei, V. Guieu, E. Peyrin and F. Lagugne-Labarthet. 2013. Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A. Analytical and Bioanalytical Chemistry 405:1613-1621.   DOI
19 Guo, L., J. Feng, Z. Fang, J. Xu and X. Lu. 2015. Application of microfluidic "lab-on-a-chip" for the detection of mycotoxins in foods. Trends in Food Science & Technology 46:252-263.   DOI
20 Guo, Y., X. Liu, X. Sun, Y. Cao and X. Y. Wang. 2015. A PDMS microfluidic impedance immunosensor for sensitive detection of pesticide residues in vegetable real samples. International Journal of Electrochemical Science 10:4155-4164.
21 He, B., B. J. Burke, X. Zhang, R. Zhang and F. E. Regnier. 2001. A picoliter-volume mixer for microfluidic analytical systems. Analytical Chemistry 73: 1942-1947.   DOI
22 Hervas, M., M. A. Lopez and A.lberto Escarpa. 2009. Electrochemical microfluidic chips coupled to magnetic bead-based ELISA to control allowable levels of zearalenone in baby foods using simplified calibration. Analyst 134:2405-2411.   DOI
23 Hervas, M., M. A. Lopez and A.lberto Escarpa. 2011. Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods. Analyst 136: 2131-2138.   DOI
24 Hu, H., Y. Deng and H. Zou. 2013. Microfluidic smectitepolymer nanocomposite strip sensor for aflatoxin detection. IEEE Sensors Journal 13:1835-1839.   DOI
25 Laporte, M., A. Montillet, D. D. Valle, C. Loisel and A. Riaublanc. 2016. Characteristics of foams produced with viscous shear thinning fluids using microchannels at high throughput. Journal of Food Engineering 173:25-33.   DOI
26 Huang, C. W., Y. T. Lin, S. T. Ding, L. L. Lo, P. H. Wang, E. C. Lin, F. W. Liu and Y. W. Lu. 2015. Efficient SNP discovery by combining microarray and lab-on-a-chip data for animal breeding and selection. Microarrays 4:570-595.   DOI
27 Karsunke, X. Y. Z. and R. Niessner. 2009. Development of a multichannel flow-through chemiluminescence microarray chip for parallel calibration and detection of pathogenic bacteria. 2009. Analytical and Bioanalytical Chemistry 395:1623-1630.   DOI
28 Kempisty, B., R. Walczak, P. Antosik, P. Sniadek, M. Rybska, H. Piotrowska, D. Bukowska, J. Dziuban, M. Nowicki, J. M. Jaskowski, M. Zabel and K. P. Brussow. 2014. Microfluidic Method of Pig Oocyte Quality Assessment in relation to Different Follicular Size Based on Lab-on-Chip Technology. BioMed Research International 2014:467063.
29 Lee, C. Y., C. L. Chang, Y. N. Wang and L. M. Fu. 2011. Microfluidic mixing: a review. International Journal of Molecular Sciences 12:3263-3287.   DOI
30 Li, P., Z. Zhang, Q. Zhang, N., Zhang, W. Zhang, X. Ding and R. Li. 2012. Current development of microfluidic immunosensing approaches for mycotoxin detection via capillary electromigration and lateral flow technology. Electrophoresis 33:2253-2265.   DOI
31 Liu, R. H., M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref and D. J. Beebe. 2000., Passive mixing in a three-dimensional serpentine microchannel. Journal of Microelectromechanical systems 9:190-197.   DOI
32 Ma, R., L. Xie, C. Han, K. Su, T. Qiu, L. Wang, G. Huang, W. Xing, J. Qiao, J. Wang and J. Cheng. 2011. In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and earlyembryo development. Analytical Chemistry 83(8):2964-2970.   DOI
33 Liu, R. H., R. Lenigk, S. R. L. Druyor, J. Yang and P. Grodzinski. 2003. Hybridization enhancement using cavitation microstreaming. Analytical Chemistry 75:1911-1917.   DOI
34 Lliescu, C., H. Taylor, M. Avram, J. Miao and S. Franssila. 2012. A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6:016505.   DOI
35 Luka, G., A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani and M. Hoorfar. 2015. Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications. Sensors 15:30011-30031.   DOI
36 Mairhofer, J., K. Roppert and P. Ertl. 2009. Microfluidic systems for pathogen sensing: A review. Sensors 9:4804-4823.   DOI
37 Mao, X. and T. J. Huang. 2012. Microfluidic diagnostics for the developing world. Lab on a Chip 12:1412-1416.   DOI
38 Mark, D., S. Haeberle, G. Roth, F. Stetten and R. Zengerle. 2009. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chemical Society Reviews 39:1153-1182.
39 McGrath, J. S., J. Quist, J. R. T. Seddon, S. C. S. Lai, S. G. Lemay and H. L. Bridle. 2016. Deformability Assessment of Waterborne Protozoa Using a Microfluidic-Enabled Force Microscopy Probe. PLoS ONE 11(3):e0150438.   DOI
40 Melin,J., G. Gimenez, N. Roxhed, W. van der Wijngaart and G. Stemme. 2004. A fast passive and planar liquid sample micromixer. Lab on a Chip 4:214-219.   DOI
41 Ramadan, Q. and M. A. M Gijs. 2012. Microfluidic applications of functionalized magnetic particles for environmental analysis: Focus on waterborne pathogen detection. Microfluidics and Nanofluidics 13(4):529-542.   DOI
42 Neethirajan, S., I. Kobayashi, M. Nakajima, D. Wu, S. Nandagopal and F. Lin. 2011. Microfluidics for food, agriculture and biosystems industries. Lab on a Chip 11(9):1574-1586.   DOI
43 Niu, X. and Y. K. Lee. 2003. Efficient spatial-temporal chaotic mixing in microchannels. Journal of Micromechanics and Microengineering 13:454-462.   DOI
44 Novo, P., G. Moulas, D. M. F. Prazeres, V. Chu and J. P. Conde. 2013. Detection of ochratoxin A in wine and beer by chemiluminescence-based ELISA in microfluidics with integrated photodiodes. Sensors and Actuators B 176:232-240.   DOI
45 Santis, R. D., A. Ciammaruconi, G. Faggioni, S. Fillo, B. Gentile, E. D. Giannatale, M. Ancora and F. Lista. 2011. High throughput MLVA-16 typing for Brucella based on the microfluidics technology. BMC Microbiology 11:60.   DOI
46 Sekhon, B. S.. 2012. Nanoprobes and their applications in veterinary medicine and animal health. Research Journal of Nanoscience and Nanotechnology 2(1):1-16.   DOI
47 Skurtys, O. and J. M. Aguilera. 2008. Applications of Microfluidic Devices in Food Engineering. Food Biophysics 3(1):1-15.   DOI
48 Tan, F., P. H. M. Leung, Z. B. Liu, Y. Zhang, L. D. Xiao, W. W. Ye, X. Zhang, L. Yi and M. Yang. 2011. A PDMS microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibodyimmobilized nanoporous membrane. Sensors and Actuators B 159:328-335.   DOI
49 Varshney, M., Y. Li, B. Srinivasan and S. Tung. 2007. A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples. Sensors and Actuators B 128:99-107.   DOI
50 Tetala, K. K., J. W. Swarts, B. Chen, A. E. Janssen and T. A. van Beek. 2009. A three-phase microfluidic chip for rapid sample clean-up of alkaloids from plant extracts. Lab on a Chip 9(14):2085-92.   DOI
51 Vijayendran, R. A., K. M. Motsegood, D. J. Beebe and D. E. Leckband. 2003. Evaluation of a three-dimensional micromixer in a surface-based biosensor. Langmuir 19:1824-1828.   DOI
52 Wang, S. Q., F. Inci, T. L. Chaunzwa, A. Ramanujam, A. Vasudevan, S. Subramanian, A. C. F. Lp, B. Sridharan, U. A. Gurkan and U. Demirci. 2012. Portable microfluidic chip for detection of Escherichia coli in produce and blood. International Journal of Nanomedicine 7:2591-2600.
53 Whitesides, G. M.. 2006. The origins and the future of microfluidics. Nature 442(7101):368-373.   DOI
54 Wielhouwer, E. M., S. Ali, A. Al-Afandi, M. T. Blom, M. B. O. Riekerink, C. Poelma, J. Westerweel, J. Oonk, E. X. Vrouwe, W. Buesink, H. G. J. vanMil, J. Chicken, R. van't Oever and M. K. Richardson. 2011. Zebrafish embryo development in a microfluidic flow-through system. Lab on a Chip 11:1815-1824.   DOI
55 Xia, Y., and G. M. Whitesides. 1998. Soft Lithography. Angewandte Chemie International Edition in English 37(5):551-575.
56 Yamaguchi, N., M. Torii, Y. Uebayashi and M. Nasu. 2011. Rapid, semiautomated quantification of bacterial cells in freshwater by using a microfluidic device for on-chip staining and counting. Applied and Environmental Microbiology 77(4):1536-1539.   DOI
57 Zhao, C. and C. Yang. 2011. AC field induced-charge electroosmosis over leaky dielectric blocks embedded in a microchannel. Electrophoresis 32:629-637.   DOI
58 Yang, M., S. Sun, Y. Kostov and A. Rasooly. 2010. Lab-on-achip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB). Lab on a Chip 10:1011-1017.   DOI
59 Yaralioglu, G. G., I. O. Wygant, T. C. Marentis and T. Khuri-Yakub. 2004. Ultrasonic mixing in microfluidic channels using integrated transducers. Analytical Chemistry 76:3694-3698.   DOI
60 Zhang, R. Q., S. L. Liu, W. Zhao, W. P. Zhang, X. Yu, Y. Li, A. J. Li, D. W. Pang and Z. L. Zhang. 2013. A Simple Pointof-Care Microfluidic Immunomagnetic Fluorescence Assay for Pathogens. Analytical Chemistry 85(5):2645-2651.   DOI