• Title/Summary/Keyword: Biological Processes

Search Result 1,544, Processing Time 0.033 seconds

Molecular Level Detection of Heavy Metal Ions Using Atomic Force Microscope (원자간인력현미경을 이용한 분자수준의 중금속 이온 검출)

  • Kim, Younghun;Kang, Sung Koo;Choi, Inhee;Lee, Jeongjin;Yi, Jongheop
    • Clean Technology
    • /
    • v.11 no.2
    • /
    • pp.69-74
    • /
    • 2005
  • A metal ion detector with a submicron size electrode was fabricated by field-induced AFM oxidation. The square frame of the mesa pattern was functionalized by APTES for the metal ion detection, and the remaining portion was used as an electrode by the self-assembly of MPTMS for Au metal deposition. The conductance changed with the quantity of adsorbed copper ions, due to electron tunneling between the mobile and surface electrodes. The smaller electrode has a lower limit of detection due to the enhancement in electron tunneling through metal ions that are adsorbed between the conductive-tip (mobile) and the surface (fixed) electrode. This two-electrode system immobilized with different functional groups was successfully used in the selective adsorption and detection of target materials.

  • PDF

Mechanisms of Macromolecular Interactions Mediated by Protein Intrinsic Disorder

  • Hong, Sunghyun;Choi, Sangmin;Kim, Ryeonghyeon;Koh, Junseock
    • Molecules and Cells
    • /
    • v.43 no.11
    • /
    • pp.899-908
    • /
    • 2020
  • Intrinsically disordered proteins or regions (IDPs or IDRs) are widespread in the eukaryotic proteome. Although lacking stable three-dimensional structures in the free forms, IDRs perform critical functions in various cellular processes. Accordingly, mutations and altered expression of IDRs are associated with many pathological conditions. Hence, it is of great importance to understand at the molecular level how IDRs interact with their binding partners. In particular, discovering the unique interaction features of IDRs originating from their dynamic nature may reveal uncharted regulatory mechanisms of specific biological processes. Here we discuss the mechanisms of the macromolecular interactions mediated by IDRs and present the relevant cellular processes including transcription, cell cycle progression, signaling, and nucleocytoplasmic transport. Of special interest is the multivalent binding nature of IDRs driving assembly of multicomponent macromolecular complexes. Integrating the previous theoretical and experimental investigations, we suggest that such IDR-driven multiprotein complexes can function as versatile allosteric switches to process diverse cellular signals. Finally, we discuss the future challenges and potential medical applications of the IDR research.

Overview on Ionic Liquid Application Technologies for Back-end Fuel Cycle Processes (핵주기 공정에서의 이온성 액체 활용 기술 개요)

  • Kim, Ki-Sub;Park, Byung Heung
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • The ionic liquids are known to potential alternative solvents capable of replacing the commercial solvents in various processes including those in nuclear fuel cycle. As to the material, a number of studies have already reviewed the interesting results and addressed the spectroscopic as well as electrochemical behaviors of metal elements included in spent nuclear fuels. It has found that the important properties of metal ions in TBP dissolved ILs have led the development of alternative technologies to traditional solvent extraction processes. On the other hand, the electrochemical deposition of metal ions in ILs have been investigated for the application of the solvents to aqueous as well as to non-aqueous processes. In this work, a review on the application of ILs in nuclear fuel cycle is briefly presented to understand the notable researches on ILs focusing on aqueous processes.

  • PDF

Wastewater Treatment by Microorganism (미생물에 의한 발효처리)

  • ;Kunisuke Ichikawa
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.2
    • /
    • pp.135-142
    • /
    • 1980
  • The process of biological treatment of organic wastewater is principally associated with those of self-purification in the natural water environment. The treatment system has e intensive function of stabilizing wastewater more effectively than in natural water, which is like natural water concentrated in a small space. Biological treatment of wastewater involves activated sludge and various modified process, trickling filter, rotating disk, oxidation ditch, etc. for aerobic decomposition and anaerobic processes such as anaerobic decomposition and methane fermentation. The basic characteristic of these processes is the use of mixed culture for the conversion of pollutants. This review forcuses on the various kinds of microorganisms related to each treatment processes. Kinetic analysis of the activated sludge process is discussed in order to understand the basis of control and maintenance of the biological treatment process.

  • PDF

Progresses in membrane and advanced oxidation processes for water treatment

  • Khulbe, K.C.;Feng, C.Y.;Matsuura, T.;Ismail, A.F.
    • Membrane and Water Treatment
    • /
    • v.3 no.3
    • /
    • pp.181-200
    • /
    • 2012
  • At present water crisis is not an issue of scarcity, but of access. There is a growing recognition of the need for increased access to clean water (drinkable, agricultural, industrial use). An encouraging number of innovative technologies, systems, components, processes are emerging for water-treatment, including new filtration and disinfectant technologies, and removal of organics from water. In the past decade many methods have been developed. The most important membrane-based water technologies include reverse osmosis (RO), ultrafiltration (UF), microfiltration (MF), and nanofiltration. Beside membrane based water-treatment processes, other techniques such as advanced oxidation process (AOP) have also been developed. Some unconventional water treatment technology such as magnetic treatment is also being developed.

A Comparative Analysis of the Bacterial Growth Kinetic Parameters for Various Biological Nutrient Removal Processes (각종 질소·인 제거공정에서 도출된 미생물 성장 동역학 계수 비교 분석)

  • Lim, Se-Ho;Ko, Kwang Baik;Oh, Young-Khee
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.647-651
    • /
    • 2004
  • In this study, some of bacterial growth kinetic parameters were delineated and evaluated for the biological nutrient removal processes such as the $A^2/O$, 4stage-BNR, Intermittent Cycle Extended Aeration System(ICEAS) and Intermittently Aerated Cylindrical Oxidation Ditch(IACOD) processes. $Y_H$ values for the ICEAS process ranged from 0.71 to 0.74, and were higher than those for the other processes. It seems to indicated that organic carbons uptaked by microorganism were more used up for cell synthesis rather than for energy components in the ICEAS process. $b_H$ for the ICEAS and IACOD processes were lower than those for $A^2/O$ and 4stage-BNR processes. The $\mu_{max{\cdot}A}$ for the ICEAS was higher than those for the other processes, which indicated that desirable operating conditions for nitrifying bacteria's growth were established.

Cell-Based Assay Design for High-Content Screening of Drug Candidates

  • Nierode, Gregory;Kwon, Paul S.;Dordick, Jonathan S.;Kwon, Seok-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.213-225
    • /
    • 2016
  • To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as high-content screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner.

Synthetic membranes in Biotechnology: Realities and Possibilities

  • Belfort, Georges
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1992.10a
    • /
    • pp.15-33
    • /
    • 1992
  • Synthetic membrane processes are being increasingly integrated into existing reaction, isolation, and recovery schemes for the production of valuable biological molecules. In many cases they are replacing traditional unit processes. The properties of membrane systems which are most often exploited for both upstream and downstream processing are their permselectivity, high surface area per unit volume, and their potential for controlling the level of contact and/or mixing between two separate phases. Advances in both membrane materials and module design and operation have led to better control of concentration polarization and membrane fouling. After presenting some recent advances in membrane materials and fluid mechanics, we demonstrate how membranes have been integrated into cellular and enzymatic reaction schemes. This is followed by a review of established and emerging membrane separation processes. Several examples are used to emphasize the synergism between biological processes and synthetic membranes.

Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals

  • Joyce Mudondo;Hoe-Suk Lee;Yunhee Jeong;Tae Hee Kim;Seungmi Kim;Bong Hyun Sung;See-Hyoung Park;Kyungmoon Park;Hyun Gil Cha;Young Joo Yeon;Hee Taek Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • Polyethylene terephthalate (PET) is a plastic material commonly applied to beverage packaging used in everyday life. Owing to PET's versatility and ease of use, its consumption has continuously increased, resulting in considerable waste generation. Several physical and chemical recycling processes have been developed to address this problem. Recently, biological upcycling is being actively studied and has come to be regarded as a powerful technology for overcoming the economic issues associated with conventional recycling methods. For upcycling, PET should be degraded into small molecules, such as terephthalic acid and ethylene glycol, which are utilized as substrates for bioconversion, through various degradation processes, including gasification, pyrolysis, and chemical/biological depolymerization. Furthermore, biological upcycling methods have been applied to biosynthesize value-added chemicals, such as adipic acid, muconic acid, catechol, vanillin, and glycolic acid. In this review, we introduce and discuss various degradation methods that yield substrates for bioconversion and biological upcycling processes to produce value-added biochemicals. These technologies encourage a circular economy, which reduces the amount of waste released into the environment.

Treatment Characteristics and Application of DAF Process for Effective Solid Separation in BNR Municipal Wastewater Treatment System (BNR 하수처리시스템에서 효과적 고형물 분리를 위한 DAF 공정의 적용과 처리특성)

  • Kwak, Dong-Heui;Rhu, Dae-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.267-276
    • /
    • 2010
  • Many plants have been improved to adapt the target of the biological treatment processes changed from organics to nutrients since the water quality criteria of effluent was reinforced and included T-N and T-P for the municipal wastewater treatment plant. To meet the criteria of T-N and T-P, the conventional biological reactor such as aeration tank in activated sludge system is changed to the BNR (biological nutrient removal) processes, which are typically divided into three units as anaerobic, anoxic and oxic tank. Therefore, the solid separation process should be redesigned to fit the BNR processes in case of the application of the DAF (dissolved air flotation) process as an alternatives because the solid-liquid separation characteristics of microbial flocs produced in the BNR processes are also different from that of activated sludge system as well. The results of this study revealed that the microbial floc of the anaerobic tank was the hardest to be separated among the three steps of the unit tanks for the BNR processes. On the contrary, the oxic tank was best for the removal efficiency of nutrients as well as suspended solid. In addition, the removal efficiency of nutrients was much improved under the chemical coagulation treatment though coagulation was not indispensable with a respect to the solid separation. On the other hand, in spited that the separation time for the microbial floc from the BNR processes were similar to the typical particles like clay flocs, over $2.32{\times}10^3$ ppm of air volume concentration was required to keep back the break-up of the bubble-floc agglomerates.