• Title/Summary/Keyword: Biological Motion

Search Result 275, Processing Time 0.024 seconds

ECG Measurement Method during Sleep with Array of Capacitive Electrodes Attached to Bed (침대에 부착된 용량성 전극 배열을 이용한 수면 중의 심전도 측정)

  • Lim, Y.G.;Kim, K.K.;Park, K.S.;Jeong, D.U.
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.521-524
    • /
    • 2005
  • In order to measure ECG in daily life, a new ECG measurement method on bed was developed. The provided method does not require any direct conductive contact between the instrument and bare skin, so that it does not cause the uncomfortable feel of touch and the possible skin trouble which are typical shortcomings of the conventional conductive contact ECG measurement. The provided method utilized an array of high-input-impedance active electrodes fixed on the mattress and an indirect-skin-contact ground made of a large conductive textile sheet and laid on lower area of the mattress. A thin cotton bedcover covered the mattress, the electrodes, and the conductive textile and subjects lay on the mattress over the bedcover. ECG was obtained successfully. However its signal quality is lower and the motion artifact is larger than direct-contact measurement. Careful measurement setup was needed to reduce the motion artifact originated from variation in static electricity. From the ECG obtained by the provided method, R-peak could be discriminated easily and the information about the position and the posture of the subject could be obtained.

  • PDF

Bending Motion Control of Electroactive Polymer Actuator-Sensor Hybrid Structure for Finger Exoskeleton (손가락 외골격용 전기활성 고분자 구동체-센서 하이브리드 구조체의 굽힘 동작 제어)

  • Han, Dong Gyun;Song, Dae Seok;Jho, Jae Young;Kim, Dong Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.865-871
    • /
    • 2015
  • This study was conducted in order to develop a finger exoskeleton system using ionic polymer metal composites (IPMCs) as the actuator and sensor in a hybrid structure. To use the IPMC as an actuator producing large force, a first order transfer function was obtained using results from a block force for DC excitation that applied to two IPMCs of 20mm-width, 50mm-length, and 2.4mm thickness together. After which the validation of 200gf control with anti-windup PI controller was confirmed. A 5mm-width, 50mm-length, 0.6mm-thickness of IPMC was also modeled as a sensor for tip displacement. As a result, the IPMC sensor could been utilized as a trigger role for the actuator. Finally, an IPMC sensor and actuator were installed on the joint of a single DOF exoskeleton in the hybrid structure, and test for the control of 40gf of block force and predefined sequence of motion was performed.

Carbon Ion Therapy: A Review of an Advanced Technology

  • Kim, Jung-in;Park, Jong Min;Wu, Hong-Gyun
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.71-80
    • /
    • 2020
  • This paper provides a brief review of the advanced technologies for carbon ion radiotherapy (CIRT), with a focus on current developments. Compared to photon beam therapy, treatment using heavy ions, especially a carbon beam, has potential advantages due to its physical and biological properties. Carbon ion beams with high linear energy transfer demonstrate high relative biological effectiveness in cell killing, particularly at the Bragg peak. With these unique properties, CIRT allows for accurate targeting and dose escalation for tumors with better sparing of adjacent normal tissues. Recently, the available CIRT technologies included fast pencil beam scanning, superconducting rotating gantry, respiratory motion management, and accurate beam modeling for the treatment planning system. These techniques provide precise treatment, operational efficiency, and patient comfort. Currently, there are 12 CIRT facilities worldwide; with technological improvements, they continue to grow in number. Ongoing technological developments include the use of multiple ion beams, effective beam delivery, accurate biological modeling, and downsizing the facility.

Effects of Emotional Information on Visual Perception and Working Memory in Biological Motion (정서 정보가 생물형운동자극의 시지각 및 작업기억에 미치는 영향)

  • Lee, Hannah;Kim, Jejoong
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.151-164
    • /
    • 2018
  • The appropriate interpretation of social cues is a crucial ability for everyday life. While processing socially relevant information, beyond the low-level physical features of the stimuli to emotional information is known to influence human cognition in various stages, from early perception to later high-level cognition, such as working memory (WM). However, it remains unclear how the influence of each type of emotional information on cognitive processes changes in response to what has occurred in the processing stage. Past studies have largely adopted face stimuli to address this type of research question, but we used a unique class of socially relevant motion stimuli, called biological motion (BM), which depicts various human actions and emotions with moving dots to exhibit the effects of anger, happiness, and neutral emotion on task performance in perceptual and working memory. In this study, participants determined whether two BM stimuli, sequentially presented with a delay between them (WM task) or one immediately after the other (perceptual task), were identical. The perceptual task showed that discrimination accuracies for emotional stimuli (i.e., angry and happy) were lower than those for neutral stimuli, implying that emotional information has a negative impact on early perceptual processes. Alternatively, the results of the WM task showed that the accuracy drop as the interstimulus interval increased was actually lower in emotional BM conditions than in the neutral condition, which suggests that emotional information benefited maintenance. Moreover, anger and happiness had distinct impacts on the performance of perception and WM. Our findings have significance as we provide evidence for the interaction of type of emotion and information-processing stage.

Context Awareness Using Wireless Biosignal Processing (무선 생체신호 처리를 이용한 상황인식)

  • Lee Sang-Bock;An Byung-Ju;Lee Sanyol;Lee Jun-Haeng
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.117-126
    • /
    • 2005
  • In this paper, it was suggested method to recognize the motion of a person(lying, sitting, walking, running) using fuzzy inference and wireless biologic signal processing system. These are to Perceive the motion of the person. Furthermore, the information of motion is indispensable parameter for Context Awareness (CA). In the present study, ADXL 202JE accelerometer sensor was used to measure for checking the continuance motion, biological quantify of motion, and motion pattern of a Person. The measured data was transmitted to CA server by Radio Frequency(RF). From the present result, we confirmed that it is difficult to decide the motion of walking and running with only the magnitude of the Longitudinal Accelerometer Average Value(LAAV) and moreover the covariance of LAAV in any block is very useful for CA of walking and running.

  • PDF

A Study on Accelerometer Based Motion Artifact Reduction in Photoplethysmography Signal (가속도계를 이용한 광전용적맥파의 동잡음 제거)

  • Kang, Joung-Hoon;Cho, Baek-Hwan;Lee, Jong-Shill;Chee, Young-Joon;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.369-376
    • /
    • 2007
  • With the convergence of ubiquitous networking and medical technologies, ubiquitous healthcare(U-Healthcare) service has come in our life, which enables a patient to receive medical services at anytime and anywhere. In the u-Healthcare environment, intelligent real-time biosignal aquisition/analysis techniques are inevitable. In this study, we propose a motion artifact cancelation method in portable photoplethysmography(PPG) signal aquisition using an accelerometer and an adaptive filter. A preliminary experiment represented that the component of the pedestrian motion artifact can be found under 5Hz in the spectral analysis. Therefore, we collected PPG signals under both simulated conditions with a motor that generates circular motion with uniform velocity (from 1 to 5Hz) and a real walking condition. We then reduced the motion artifact using a recursive least square adaptive filter which takes the accelerometer output as a noise reference. The results showed that the adaptive filter can remove the motion artifact effectively and recover peak points in PPG signals, which represents our method can be useful to detect heart rate in real walking condition.

Bio-mimetic Recognition of Action Sequence using Unsupervised Learning (비지도 학습을 이용한 생체 모방 동작 인지 기반의 동작 순서 인식)

  • Kim, Jin Ok
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.9-20
    • /
    • 2014
  • Making good predictions about the outcome of one's actions would seem to be essential in the context of social interaction and decision-making. This paper proposes a computational model for learning articulated motion patterns for action recognition, which mimics biological-inspired visual perception processing of human brain. Developed model of cortical architecture for the unsupervised learning of motion sequence, builds upon neurophysiological knowledge about the cortical sites such as IT, MT, STS and specific neuronal representation which contribute to articulated motion perception. Experiments show how the model automatically selects significant motion patterns as well as meaningful static snapshot categories from continuous video input. Such key poses correspond to articulated postures which are utilized in probing the trained network to impose implied motion perception from static views. We also present how sequence selective representations are learned in STS by fusing snapshot and motion input and how learned feedback connections enable making predictions about future input sequence. Network simulations demonstrate the computational capacity of the proposed model for motion recognition.

Particle-motion-tracking Algorithm for the Evaluation of the Multi-physical Properties of Single Nanoparticles (단일 나노입자의 다중 물리량의 평가를 위한 입자 모션 트랙킹 알고리즘)

  • Park, Yeeun;Kang, Geeyoon;Park, Minsu;Noh, Hyowoong;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.175-179
    • /
    • 2022
  • The physical properties of biomaterials are important for their isolation and separation from body fluids. In particular, the precise evaluation of the multi-physical properties of single biomolecules is essential in that the correlation between physical and biological properties of specific biomolecule. However, the majority of scientific equipment, can only determine specific-physical properties of single nanoparticles, making the evaluation of the multi-physical properties difficult. The improvement of analytical techniques for the evaluation of multi-physical properties is therefore required in various research fields. In this study, we developed a motion-tracking algorithm to evaluate the multi-physical properties of single-nanoparticles by analyzing their behavior. We observed the Brownian motion and electric-field-induced drift of fluorescent nanoparticles injected in a microfluidic chip with two electrodes using confocal microscopy. The proposed algorithm is able to determine the size of the nanoparticles by i) removing the background noise from images, ii) tracking the motion of nanoparticles using the circular-Hough transform, iii) extracting the mean squared displacement (MSD) of the tracked nanoparticles, and iv) applying the MSD to the Stokes-Einstein equation. We compared the evaluated size of the nanoparticles with the size measured by SEM. We also determined the zeta-potential and surface-charge density of the nanoparticles using the extracted electrophoretic velocity and the Helmholtz-Smoluchowski equation. The proposed motion-tracking algorithm could be employed in various fields related to biomaterial analysis, such as exosome analysis.

Development of a Human Motion Analyzer (인체 동작 분석기의 개발)

  • 김민기;김성호
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.217-222
    • /
    • 1995
  • We propose some applications of image processing techniques to extract quantitative measurements by using a camera system developed in Korea university and Catholic Medical School. From now on the system will be called as KCMOTION. The purpose of this study is to provide basic kinematic and kinetic data for the analysis of human movements and to find the clinical usefulness and reliability of the proposed motion analysis system. Two tests, sit-to-stand (STS) movements and pendulum test, are conducted by the system. The aims of the tests are to identify variability and reliability of KCMOTION to give some quantitative comparisons to the other systems. The result of STS movement are compared to the LOCUS IIID motion analyzer by the ratio of maximum flexion movement per body weight to the actual maximum flexion extension torque per body weight. That result in 29 % and 33 % for hip and knee joint, respectively in KCMOTION and 27 % and 30 % in LOCUS IIID System. The results of the pendulum movements are compared to that of using Cybex and Electrogoniometer with relaxation index, amplitude ratio, swing number and swing time. The results of relaxation index and amplitude ratio of the KCMOTION are between those of the Cybex and Electrogoniometer. We also observed that the KCMOTION detect more natural movement, from the results of swing number and time.

  • PDF

Filter Design to Eliminate Motion Artifact of Pulse Oximetery (펄스 옥시메터의 동잡음 제거 필터 설계)

  • 이주원;이종희;강익태;김경하;이건기
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.5
    • /
    • pp.431-438
    • /
    • 2001
  • Oxygen saturation of blood is defined as ratio of total hemoglobins density to oxyhemoglobins density And the accuracy of pulse oxymeter that measures the oxygen saturation of blood by a noninvasive method is influenced by a measuring environment, breathing and motion of patient. Especially when patient moved his arms and fingers, it is difficult to eliminate motion artifact because the motion artifact signal has features that are overlap or closed at normal signal in frequency domain. We propose the filtering method that construct the filter banks and a matched falter to improve the Problem. When experimented by the proposed method, the ratio regulation of the proposed methods has 4.1% below than an adaptive filter (39.7%) and a moving average filter (11.2%). So. the Proposed method will be able to get a stable ratio of SpO2.

  • PDF