• 제목/요약/키워드: Biological Motion

검색결과 276건 처리시간 0.025초

보행속도에 따른 지면보행과 Treadmill 보행의 비교: 운동분석 및 에너지 소모 (The Comparison of Overground Walking and Treadmill Walking According to the Walking Speed: Motion Analysis and Energy Consumption)

  • 손량희;최희석;손종상;황성재;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권3호
    • /
    • pp.226-232
    • /
    • 2009
  • In this study, treadmill walking and overground walking were compared at the same condition based on kinematics and energy expenditures(EE). In addition, we compared the actual energy expenditure and calculated EE by treadmill. The kinematics of treadmill and overground walking were very similar. The values at each joint were significantly different(P<0.05), but magnitude of the difference was generally less than 4$^{\circ}$. In the EE using cardiopulmonary exercise, EE of treadmill walking was significantly greater when measured on the overground. It seemed to be the increased stress during the gait by the continuous movement of the belt. As the velocity increased, there was significant difference between actual EE and calculated EE by treadmill due to EE curve increasing exponentially. Therefore the further study would be required to find the correlation of the two methods and calibrate the values from them.

기립상태에서 발바닥에 인가한 진동자극의 주파수에 따른 자세균형 응답 (Effects of Plantar sole Vibration using Various Frequencies on Postural Response During Standing)

  • 유미;박용군;김동욱;김남균
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권3호
    • /
    • pp.247-254
    • /
    • 2009
  • We studied the postural response induced by plantar sole vibration with various frequencies(20, 60, 100Hz) and vibration zone(the anterior and posterior foot zone) of both soles during standing. Eight healthy young adults were exposed to 15s periods of plantar sole vibration while blindfolded. Body sway(COM, center of mass), the angle of neck, trunk, hip, knee, ankle and EMG of four lower limb muscles(tibialis anterior, lateral and medial gastrocnemial, soleus muscle) were recorded during 15s plantar sole vibration using 3D motion analysis system. Simulating each zone separately resulted in spatially oriented body tilts; oppositely directed backward and forward, respectively, the amplitude of which was proportional to the vibration frequency. EMG activity of lower limb muscles also varied according to the direction of the vibration zone and linearly according to the frequency. These findings led us to consider the plantar sole vibration as useful method of postural balance control and adjustment.

생체모방형 건구동식 의수의 설계 (Design of Biomimetic Hand Prosthesis with Tendon-driven Five Fingers)

  • 정성윤;강성균;배주환;문인혁
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권3호
    • /
    • pp.205-212
    • /
    • 2009
  • This paper proposes a biomimetic hand prosthesis with tendon-driven five fingers. Each finger is composed of a distal-middle phalange, a proximal phalange and a metacarpal bone, which are connected to a link mechanism. The finger flexion is a resultant motion by pulling a wire to serve as a tendon, but the finger extension is performed by an elastic mechanism composed of a restoration spring. The designed hand prosthesis with tendon-driven five fingers has totally six degrees of freedom. But its weight is merely 400.73g. The hand can perform various hand functions such as the grasping and the hand postures. From experimental results, we show that the proposed hand prosthesis is useful to amputees as a prosthetic hand.

직선 및 회전 보행 시 편마비에 따른 고령자의 보행 특성 변화 (Alteration of Gait Characteristics in Hemiplegic Elderly during Straight and Revolution Gaits)

  • 정호현;이범기;전경진;임도형
    • 대한의용생체공학회:의공학회지
    • /
    • 제35권2호
    • /
    • pp.26-34
    • /
    • 2014
  • Little information is available about the characteristics in revolution gait of hemiplegic elderly, which is frequently represented in daily life. It is also hard to elucidate purely the characteristics due to hemiplegia because of no consideration of aging factors. The aim of study is to identify the alteration characteristics of lower extremity joint angles in both straight and revolution gaits together due to hemiplegia through comparing healthy with hemiplegic elderly. Following Institutional Review Board approval, twelve healthy and hemiplegic elderly were participated and the center of body mass (COM) and lower extremity joint angles were measured during straight and revolution gaits using a computer-aided video motion capture system. The results showed that the gait characteristics were generally altered in both straight and revolution gaits due to hemiplegia (p < 0.05). The gait characteristics were then different between the straight and revolution gaits each other. This study may be valuable by identifying for the first time the alterations of the lower extremity joint angles in both straight and revolution gaits due to pure hemiplegia through comparing healthy elderly with hemiplegic elderly.

위상 변경 고유치 재해석 기법을 이용한 최적 구조물 동특성 변경 (Optimal Structural Dynamics Modification Using Eigen Reanalysis Technique of Technique of Topological Modifications)

  • 이준호;박영진;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.77-81
    • /
    • 2003
  • SDM (Structural Dynamics Modification) is a tool to improve dynamic characteristics of a structure, more specifically of a base structure, by adding or deleting auxiliary (modifying) structures. In this paper, the goal of the optimal SDM is set to maximize the natural frequency of a base plate structure by attaching serially-connected beam stiffeners. The design variables are chosen as positions of the attaching beam stiffeners, where the number of stiffeners is considered as a design space. The problem of non-matching interface nodes between the base plate and beam stiffeners is solved by using localized Lagrange multipliers, which act to glue the two structures with non-matching interface nodes. As fer the cases of non-matching interface nodes problem, the governing equation of motion of a structure can be considered from the viewpoint of a topological modification, which involves the change of the number of structural members and DOFs. Consequently, the eigenpairs of the beam-stiffened plate structure are obtained by using an eigen reanalysis technique of topological modifications. Evolution Strategies (ES), which is a probabilistic population-based optimization technique that mimics the principles from biological evolution in nature, is utilized as a mean for the optimization.

  • PDF

무선 데이터 통신망을 이용한 보행형 감시 시스템 개발에 관한 연구 (A Study on the Implementation of Ambulatory Monitoring System Using Wireless Data Communication Network)

  • 고성일;김영길
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권1호
    • /
    • pp.75-80
    • /
    • 1999
  • 홀터 심전계는 일반 심전계와 달리 활동중의 심전도를 기록하므로서 복잡한 심장질환을 효과적으로 모니터링할 수 있으나 24시간 동안의 심전도를 수집하여 진단하기 때문에 급작스런 심장질환에 대해서는 대처할 수 없다. 따라서 본 논문에서는 홀터 심전계와 같은 이동형 심전도 단말기에 900Mhz 대역을 사용하는 부선 데이터 통신망 인터페이스를 첨가하여 심장 이상으로 인한 급사위험이 있는 환자를 감시${\cdot}$관리할 수 있는 보행형 감시 시스템 모델을 제안하고 이동형 심전도 단말기와 담당 의사를 위한 휴대형 단말기를 구현함으로써 무선 데이터 통신망을 이용한 보행형 감시 시스템이 구현될 수 있음을 검증하였다.

  • PDF

Nano and micro structures for label-free detection of biomolecules

  • Eom, Kil-Ho;Kwon, Tae-Yun;Sohn, Young-Soo
    • 센서학회지
    • /
    • 제19권6호
    • /
    • pp.403-420
    • /
    • 2010
  • Nano and micro structure-based biosensors are promising tool for label-free detection of biomolecular interactions with great accuracy. This review gives a brief survey on nano and micro platforms to sense a variety of analytes such as DNA, proteins and viruses. Among incredible nano and micro structure for bio-analytical applications, the scope of this paper will be limited to micro and nano resonators and nanowire field-effect transistors. Nanomechanical motion of the resonators transducers biological information to readable signals. They are commonly combined with an optical, capacitive or piezo-resistive detection systems. Binding of target molecule to the modified surface of nanowire modulates the current of the nanowire through electrical field-effect. Both detection methods have advantages of label-free, real-time and high sensitive detection. These structures can be extended to fabricate array-type sensors for multiplexed detection and high-throughput analysis. The biosensors based on these structures will be applied to lab-on-a-chip platforms and point-of-care diagnostics. Basic concepts including detection mechanisms and trends in their fields will be covered in this review.

MFCC-HMM-GMM을 이용한 근전도(EMG)신호 패턴인식의 성능 개선 (Performance Improvement of EMG-Pattern Recognition Using MFCC-HMM-GMM)

  • 최흥호;김정호;권장우
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권5호
    • /
    • pp.237-244
    • /
    • 2006
  • This study proposes an approach to the performance improvement of EMG(Electromyogram) pattern recognition. MFCC(Mel-Frequency Cepstral Coefficients)'s approach is molded after the characteristics of the human hearing organ. While it supplies the most typical feature in frequency domain, it should be reorganized to detect the features in EMG signal. And the dynamic aspects of EMG are important for a task, such as a continuous prosthetic control or various time length EMG signal recognition, which have not been successfully mastered by the most approaches. Thus, this paper proposes reorganized MFCC and HMM-GMM, which is adaptable for the dynamic features of the signal. Moreover, it requires an analysis on the most suitable system setting fur EMG pattern recognition. To meet the requirement, this study balanced the recognition-rate against the error-rates produced by the various settings when loaming based on the EMG data for each motion.

호피 시 착지방법에 따른 하지 강성도 (Lower extremity stiffness over different landing methods during hopping)

  • 이정주;손종상;김정윤;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권2호
    • /
    • pp.105-108
    • /
    • 2011
  • The purpose of the present study was to analyze the lower stiffness over the difference between soft and stiff landings during hopping. Five male subjects performed hopping on two legs at 2.5 Hz. During the experiments, 3D motion capture system was used to obtain the kinematic data and two force plates were synchronized to calculate the kinetic data. We determined lower extremity stiffness of the knee and ankle from kinetic and kinematic data. Leg stiffness was approximately 1.2-times significantly higher in stiff landing than in soft landing_ There was no significant difference in knee joint stiffness between soft and stiff landings. Ankle joint stiffness was approximately 1.34-times significantly higher in stiff landing than in soft landing. These results suggest that humans adjust lower extremity stiffness over the comparison of two different landing methods we evaluated.

Development of a Tele-Rehabilitation System for Outcome Evaluation of Physical Therapy

  • Park, Hyung-Soon;Lee, Jeong-Wan
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권3호
    • /
    • pp.179-186
    • /
    • 2008
  • This paper presents a portable tele-assessment system designed for remote evaluation of the hypertonic elbow joint of neurologically impaired patients. A patient's upper limb was securely strapped to a portable limb-stretching device which is connected through Internet to a portable haptic device by which a clinician remotely moved the patient's elbow joint and felt the resistance from the patient. Elbow flexion angle and joint torques were measured from both master and slave devices and bilaterally fed back to their counterparts. In order to overcome problems associated with the network latency, two different tele-operation schemes were proposed depending on relative speed of tasks compared to the amount of time delay. For slow movement tasks, the bilateral tele-operation was achieved in real-time by designing control architectures after causality analysis. For fast movement tasks, we used a semi-real-time tele-operation scheme which provided the clinicians with stable and transparent feeling. The tele-assessment system was verified experimentally on patients with stroke. The devices were made portable and low cost, which makes it potentially more accessible to patients in remote areas.