• Title/Summary/Keyword: Biological Immune System

Search Result 243, Processing Time 0.027 seconds

Genome editing of immune cells using CRISPR/Cas9

  • Kim, Segi;Hupperetz, Cedric;Lim, Seongjoon;Kim, Chan Hyuk
    • BMB Reports
    • /
    • v.54 no.1
    • /
    • pp.59-69
    • /
    • 2021
  • The ability to read, write, and edit genomic information in living organisms can have a profound impact on research, health, economic, and environmental issues. The CRISPR/Cas system, recently discovered as an adaptive immune system in prokaryotes, has revolutionized the ease and throughput of genome editing in mammalian cells and has proved itself indispensable to the engineering of immune cells and identification of novel immune mechanisms. In this review, we summarize the CRISPR/Cas9 system and the history of its discovery and optimization. We then focus on engineering T cells and other types of immune cells, with emphasis on therapeutic applications. Last, we describe the different modifications of Cas9 and their recent applications in the genome-wide screening of immune cells.

A Vibration Control of the Strcture using Immune Response Algorithm (면역반응 알고리즘을 이용한 구조물의 진동제어)

  • 이영진;이권순
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.389-398
    • /
    • 1999
  • In the biological immunity, the immune system of organisms regulates the antibody and T-cells to protect the attack from the foreign materials which are virus, germ cell, and other antigens, and supports their stable state. It has similar characteristics that has the adaptation and robustness to overcome disturbances and to control the plant of engineering application. In this paper, we build a model of the T-cell regulated immune response mechanism. We have also designed an immune response controller(IRC) focusing on the T-cell regulated immune response of the biological immune system that include both a help part to control the response and a suppress part to adjust system stabilization effect. We show some computer simulation to control the vibration of building structure system with strong wind forces excitation also demonstrate the efficiency of the proposed controller for applying a practical system even with existing nonlinear terms.

  • PDF

An Overview of Psychoneuroimmunology (정신신경면역학 개관)

  • Kim, Do Hoon
    • Korean Journal of Biological Psychiatry
    • /
    • v.15 no.3
    • /
    • pp.147-151
    • /
    • 2008
  • This review briefly summarizes the relevant knowledge of psychoneuroimmunological basis for neuroimmunology, with particular emphasis on bidirectional neural-immune interactions. The immune system and the nervous system maintain extensive communication, including hardwiring of sympathetic and parasympathetic nerves to lymphoid organs. Immune system is modulated by various neurotransmitters such as acetylcholine, norepinephrine, substance P and histamine. Neuroendocrine hormones such as corticotrophin-releasing hormone(CRH) or substance P regulate cytokine balance. The immune system modulates brain activity including sleep and body temperature. Recent studies have revealed that psychological factors which influence immunity and immune-related disease may modulate brain-to -immune interaction. But, we still await the scientific research and evidences to prove whether or how behavioral or treatment intervention of stress can influence the development, progress or prevention of a specific disease.

  • PDF

Studying immune system using imaging and microfabrication (생체영상과 미세가공을 이용한 면역 시스템 연구)

  • Doh, Jun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1446-1449
    • /
    • 2008
  • Immune system is composed of multiple cells with distinct functions, and immune responses are orchestrated by complex and dynamic cell-cell interactions. Therefore, each cell behavior and function should be understood under right spatio-temporal context. Studying such complexity and dynamics has been challenging with conventional biological tools. Recent development of new technologies such as state of art imaging instruments and microfabrication techniques compatible with biological systems have provided many exciting opportunities to dissect complex and dynamic immune cell interactions; new microscopy techniques enable us to observe stunning dynamics of immune system in real time. Microfabrication permits us to manipulate microenvironments governing molecular/cellular dynamics of immune cells to study detailed mechanisms of phenomena observed by microscopy. Also, microfabrication can be used to engineer microenvironments optimal for specific imaging techniques. In this presentation, I am going to present an example of how these two techniques can be combined to tackle challenging problems in immunology. Obviously, this strategy can readily be applied to many different fields of biology other than immunology.

  • PDF

A Design of An Active PID control using Immune Algorithm for Vibration Control of Building Structure (구조물 진동제어를 위한 Immune Algorithm을 이용한 Active PID 제어기 설계)

  • Lee, Young-Jin;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.72-74
    • /
    • 2005
  • In this paper, we propose an adaptive PID controller using a cell-mediated immune response to improve a PID control performance. The proposed controller is based on the specific immune response of the biological immune system that is cell-mediated immunity. The immune system of organisms in the real body regulates the antibody and the T-cells to protect an attack from the foreign materials like virus, germ cells, and other antigens. It has similar characteristics that are the adaptation and robustness to overcome disturbances and to control the plant of engineering application. We first build a model of the T-cell regulated immune response mechanism and then designed an I-PID controller focusing on the T-cell regulated immune response of the biological immune system. We apply the proposed methodology to building structures to mitigate vibrations due to strong winds for evaluation of control performances. Through computer simulations, system responses are illustrated and additionally compared to traditional control approaches.

  • PDF

Action Selections for an Autonomous Mobile Robot by Artificial Immune Network (인공면역망에 의한 자율이동로봇의 행동 선택)

  • 한상현;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.532-532
    • /
    • 2000
  • Conventional artificial intelligence systems are not properly responding under dynamically changing environments. To overcome this problem, reactive planning systems implementing new Al principles, called behavior-based Al or emergent computation, have been proposed and confirmed their usefulness. As another alternative, biological information processing systems may provide many feasible ideas to these problems. Immune system, among these systems, plays important roles to maintain its own system against dynamically changing environments. Therefore, immune system would provide a new paradigm suitable for dynamic problem dealing with unknown environments. In this paper, a new approach to behavior-based Al by paying attention to biological immune system is investigated. The feasibility of this method is confirmed by applying to behavior control of an autonomous mobile robot in cluttered environment.

  • PDF

Estudy the Effect of Breast Cancer on Tlr2 Expression in Nb4 Cell

  • Amirfakhri, Siamak;Salimi, Arsalan;Fernandez, Nelson
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8445-8450
    • /
    • 2016
  • Background: Breast cancer is the most common neoplasm in women and the most frequent cause of death in those between 35 and 55 years of age. All multicellular organisms have an innate immune system, whereas the adaptive or 'acquired' immune system is restricted to vertebrates. This study focused on the effect of conditioned medium isolated from cultured breast cancer cells on NB4 neutrophil-like cells. Materials and Methods: In the current study neutrophil-like NB4 cells were incubated with MCF-7 cell-conditioned medium. After 6 h incubation the intracellular receptor TLR2, was analyzed. Results: The results revealed that MCF-7 cell-conditioned medium elicited expression of TLR2 in NB4 cells. Conclusions: This treatment would result in the production of particular stimulants (i.e. soluble cytokines), eliciting the expression of immune system receptors. Furthermore, the flow cytometry results demonstrated that MCF-7 cell-conditioned medium elicited an effect on TLR2 intracellular receptors.

Adaptogenic effects of Panax ginseng on modulation of immune functions

  • Ratan, Zubair Ahmed;Youn, Soo Hyun;Kwak, Yi-Seong;Han, Chang-Kyun;Haidere, Mohammad Faisal;Kim, Jin Kyeong;Min, Hyeyoung;Jung, You-Jung;Hosseinzadeh, Hassan;Hyun, Sun Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.32-40
    • /
    • 2021
  • Traditional medicinal practices have used natural products such as adaptogens to treat inflammatory, autoimmune, neurodegenerative, bacterial, and viral diseases since the early days of civilization. Panax ginseng Myer is a common herb used in East Asian countries for millennia, especially in Korea, China, and Japan. Numerous studies indicate that ginseng can modulate the immune system and thereby prevent diseases. Although the human immune system comprises many different types of cells, multiple studies suggest that each type of immune cell can be controlled or stimulated by ginseng or its derivatives. Provisional lists of ginseng's potential for use against viruses, bacteria, and other microorganisms suggest it may prove to be a valuable pharmaceutical resource, particularly if higher-quality evidence can be found. Here, we reviewed the role of ginseng as an immune-modulating agent in attempt to provide a valuable starting point for future studies on the herb and the human immune system.

Design of Steering Controller of AGV using Cell Mediate Immune Algorithm (세포성 면역 알고리즘을 이용한 AGV의 조향 제어기 설계에 관한 연구)

  • Lee, Yeong-Jin;Lee, Jin-U;Lee, Gwon-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.827-836
    • /
    • 2001
  • The PID controller has been widely applied to the most control systems because of its simple structure and east designing. One of the important points to design the PID control system is to tune the approximate control parameters for the given target system. To find the PID parameters using Ziegler Nichols(ZN) method needs a lot of experience and experiments to ensure the optimal performance. In this paper, CMIA(Cell Mediated Immune Algorithm) controller is proposed to drive the autonomous guided vehicle (AGV) more effectively. The proposed controller is based on specific immune responses of the biological immune system which is the cell mediated immunity. To verify the performance of the proposed CMIA controller, some experiments for the control of steering and speed of that AGV are performed. The tracking error of the AGV is mainly investigated for this purpose. As a result, the capability of realization and reliableness are proved by comparing the response characteristics of the proposed CMIA controllers with those of the conventional PID and NNPID(Neural Network PID) controller.

  • PDF

A Design of Adaptive Controller based on Immune System (면역시스템에 기반한 적응제어기 설계에 관한 연구)

  • Lee Kwon Soon;Lee Young Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1137-1147
    • /
    • 2004
  • In this paper, we proposed two types of adaptive control mechanism which is named HIA(Humoral Immune Algorithm) PID and CMIA(Cell-Mediated Immune Algorithm) controller based on biological immune system under engineering point of view. The HIA PID which has real time control scheme is focused on the humoral immunity and the latter which has the self-tuning mechanism is focused on the T-cell regulated immune response. To verify the performance of the proposed controller, some experiments for the control of AGV which is used for the port automation to carry container without human are performed. The experimental results for the control of steering and speed of an AGV system illustrate the effectiveness of the proposed control scheme. Moreover, in that results, proposed controllers have better performance than other conventional PID controller and intelligent control method which is the NN(neural network) PID controller.