• Title/Summary/Keyword: Biological Engineering

Search Result 9,444, Processing Time 0.034 seconds

Characteristics of Packed-bed Plasma Reactor with Dielectric Barrier Discharge for Treating (에틸렌 처리를 위한 충진층 유전체배리어방전 플라즈마 반응기의 특성)

  • Sudhakaran, M.S.P.;Jo, Jin Oh;Trinh, Quang Hung;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.495-504
    • /
    • 2015
  • This work investigated the characteristics of a packed-bed plasma reactor system and the performances of the plasma reactors connected in series or in parallel for the decomposition of ethylene. Before the discharge ignition, the effective capacitance of the ${\gamma}$-alumina packed-bed plasma reactor was larger than that of the reactor without any packing, but after the ignition the effective capacitance was similar to each other, regardless of the packing. The energy of electrons created by plasma depends mainly on the electric field intensity, and was not significantly affected by the gas composition in the range of 0~20% (v/v) oxygen (nitrogen : 80~100% (v/v)). Among the various reactive species generated by plasma, ground-state atomic oxygen and ozone are understood to be primarily involved in oxidation reactions, and as the electric field intensity increases, the amount of ground-state atomic oxygen relatively decreases while that of nitrogen atom increases. Even though there are many parameters affecting the performance of the plasma reactor such as a voltage, discharge power, gas flow rate and residence time, all parameters can be integrated into a single parameter, namely, specific input energy (SIE). It was experimentally confirmed that the performances of the plasma reactors connected in series or in parallel could be treated as a function of SIE alone, which simplifies the scale-up design procedure. Besides, the ethylene decomposition results can be predicted by the calculation using the rate constant expressed as a function of SIE.

Influence of Textural Structure by Heat-treatment on Electrochemical Properties of Pitch-based Activated Carbon Fiber (열처리 온도에 의한 피치계 활성탄소섬유의 기공구조 변화가 전기화학적 특성에 미치는 영향)

  • Kim, Kyung Hoon;Park, Mi-Seon;Jung, Min-Jung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.598-603
    • /
    • 2015
  • In this study, electrochemical properties of pitch-based activated carbon fibers (ACFs) were investigated by different heat-treatment temperature of the pitch-based ACFs in order to improve the specific capacitance of electric double-layer capacitor (EDLC). The ACFs were prepared by different heat-treatment temperatures of 1050 and $1450^{\circ}C$, after activation with 4 M KOH at $800^{\circ}C$ using stabilized pitch fiber. The specific surface area of prepared ACFs increased from $828m^2/g$ to $987m^2/g$, also the micropore and mesopore volumes of prepared ACFs were increased. These results because pore was produced by desorbing oxygen and hydrogen elements within the ACFs, and pore size was increased by contraction ACFs by heat-treatment process. Because of the porous properties, the specific capacitance was increased from 73 F/g to 119 F/g using cyclic voltammetry with 1 M $H_2SO_4$ at scan rates of 5 mV/s.

Electrical Discharge Plasma in a Porous Ceramic Membrane-supported Catalyst for the Decomposition of a Volatile Organic Compound (다공질 세라믹지지 촉매 상에서의 플라즈마 방전을 이용한 휘발성유기화합물의 분해)

  • Jo, Jin-Oh;Lee, Sang Baek;Jang, Dong Lyong;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.433-437
    • /
    • 2013
  • Electrical discharge plasma created in a multi-channel porous ceramic membrane-supported catalyst was applied to the decomposition of a volatile organic compound (VOC). For the purpose of improving the oxidation capability, the ceramic membrane used as a low-pressure drop catalyst support was loaded with zinc oxide photocatalyst by the incipient wetness impregnation method. Alternating current-driven discharge plasma was created inside the porous ceramic membrane to produce reactive species such as radicals, ozone, ions and excited molecules available for the decomposition of VOC. As the voltage supplied to the reactor increased, the plasma discharge gradually propagated in the radial direction, creating an uniform plasma in the entire ceramic membrane above a certain voltage. Ethylene was used as a model VOC. The ethylene decomposition efficiency was examined with experimental variables such as the specific energy density, inlet ethylene concentration and zinc oxide loading. When compared at the identical energy density, the decomposition efficiency obtained with the zinc oxide-loaded ceramic membrane was substantially higher than that of the bare membrane case. Both nitrogen and oxygen played an important role in initiating the decomposition of ethylene. The rate of the decomposition is governed by the quantity of reactive species generated by the plasma, and a strong dependence of the decomposition efficiency on the initial concentration was observed.

Efficient Stereoselective Synthesis of (2S,3S,4S)-3,4-Dihydroxyglutamic Acid ((2S,3S,4S)-3,4-다이하이드록시글루타믹산의 효율적인 입체선택적 합성)

  • Jeon, Jongho;Shin, Nara;Lee, Jong Hyup;Kim, Young Gyu
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.392-395
    • /
    • 2014
  • (2S,3S,4S)-3,4-Dihydroxyglutamic acid (DHGA), a biologically active ${\alpha},{\beta}$-dihydroxy-${\gamma}$-amino acid, was efficiently synthesized from a readily available D-serine derivative in 30% overall yield over 11 steps. The key stereoselective $OsO_4$-catalyzed dihydroxylation reaction controlled by an N-diphenylmethylene group on the amino group of ${\gamma}$-amino-${\alpha},{\beta}$-unsaturated (Z)-ester successfully introduced the diol moiety of the intermediate 5a in 86% with more than 10 : 1 diastereomeric ration. Then it was in turn successfully converted to the desired target compound, (2S,3S,4S)-3,4-DHGA, via simple oxidation and hydrolysis in a highly stereoselective manner and a higher yield than the previous syntheses. This result strongly supports that our synthetic methodology of stereoselective $OsO_4$-catalyzed dihydroxylation should be useful in stereoselctive synthesis of various bioactive compounds with an amino diol moiety.

Fault Detection & SPC of Batch Process using Multi-way Regression Method (다축-다변량회귀분석 기법을 이용한 회분식 공정의 이상감지 및 통계적 제어 방법)

  • Woo, Kyoung Sup;Lee, Chang Jun;Han, Kyoung Hoon;Ko, Jae Wook;Yoon, En Sup
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.32-38
    • /
    • 2007
  • A batch Process has a multi-way data structure that consists of batch-time-variable axis, so the statistical modeling of a batch process is a difficult and challenging issue to the process engineers. In this study, We applied a statistical process control technique to the general batch process data, and implemented a fault-detection and Statistical process control system that was able to detect, identify and diagnose the fault. Semiconductor etch process and semi-batch styrene-butadiene rubber process data are used to case study. Before the modeling, we pre-processed the data using the multi-way unfolding technique to decompose the data structure. Multivariate regression techniques like support vector regression and partial least squares were used to identify the relation between the process variables and process condition. Finally, we constructed the root mean squared error chart and variable contribution chart to diagnose the faults.

Controlling the Location of Thermally Stable Au Nanoparticles with Tailored Surface Property within Block Copolymer Templates (열적으로 안정한 금나노입자를 이용한 블록공중합체 내에서의 입자위치 조절)

  • Kim, Se-Yong;Yoo, Mi-Sang;Jung, Se-Ra;Paek, Kwan-Yeul;Kim, Bum-Joon J.;Bang, Joona
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.238-243
    • /
    • 2011
  • Organic/inorganic hybrid materials have a lot of interest in various areas due to their fascinating properties. To control the location and dispersion of inorganic nanoparticles within polymer matrix. thiol-terminated polymeric ligands have been widely used to tune the surface property of nanoparticles. However, the specific binding between the thiol functional group and metal is unstable with increasing temperature. To archive the thermally-stable Au nanoparticles, we previously synthesized various UV-crosslinkable polymeric ligands, which have different compositions of polar, UV-crosslinkable azide unit comparing to non-polar 스티렌 units. After crosslinking the Au nanoparticles, it was found that the nanoparticles had superb stability at high temperature (above $180^{\circ}C$). In this work, we used thermally-stable Au nanoparticles to control the location within the polymer matrix. By changing the amount of polar azide units in the polymeric ligands, we could precisely control the location of nanoparticles from one domain to the interface of block copolymer templates.

Electrochemical Properties of Carbon Felt Electrode for Vanadium Redox Flow Batteries by Liquid Ammonia Treatment (암모니아수 처리에 따른 바나듐 레독스 흐름전지용 탄소펠트 전극의 전기화학적 특성)

  • Kim, Yesol;Cho, Seho;Park, Se-Kook;Jeon, Jae-Deok;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.292-299
    • /
    • 2014
  • In this study, nitrogen doped carbon felt (CFt) is prepared using thermal oxidation and liquid phase ammonia treatment to improve the efficiency for vanadium redox flow batteries (VRFB). The electrochemical properties of prepared CFt electrodes are investigated using cyclic voltammetry (CV) and charge/discharge test. The XPS result shows that the increase of liquid phase ammonia treatment temperature leads to the increased nitrogen functional group on the CFt surface. Redox reaction characteristics using CV reveal that the liquid phase ammonia treated CFt electrodes are more reversible than the thermally oxidized CFt. When CFt is treated by the liquid phase ammonia at $300^{\circ}C$, VRFB cell energy efficiency, voltage efficiency, and current efficiency are increased about 6.93%, 1.0%, and 4.5%, respectively, compared to those of the thermally oxidized CFt. These results are because nitrogen functional groups on CFt help to improve the electrochemical properties of redox reaction between electrode and electrolyte interface.

Software Package for Pipe Hydraulics Calculation for Single and Two Phase Flow (배관 유동의 주요 변수계산을 위한 소프트웨어 시스템의 개발)

  • Chang, Jaehun;Lee, Gunhee;Jung, Minyoung;Baek, Heumkyung;Lee, Changha;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.628-636
    • /
    • 2019
  • In various industrial processes, piping serves as a link between unit processes and is an essential installation for internal flow. Therefore, the optimum design of the piping system is very important in terms of safety and cost, which requires the estimation of the pressure drop, flow rate, pipe size, etc. in the piping system. In this study, we developed a software that determines pressure drop, flow rate, and pipe size when any two of these design variables are known. We categorized the flows into single phase, homogeneous two phase, and separated two phase flows, and applied suitable calculation models accordingly. We also constructed a system library for the calculation of the pipe material, relative roughness, fluid property, and friction coefficients to minimize user input. We further created a costing library according to the piping material for the calculation of the investment cost of the pipe per unit length. We implemented all these functions in an integrated environment using a graphical user interface for user convenience, and C # programming language. Finally, we verified the accuracy of the software using literature data and examples from an industrial process with obtained deviations of 1% and 8.8% for the single phase and two-phase models.