• Title/Summary/Keyword: Biological Engineering

Search Result 9,444, Processing Time 0.035 seconds

RESEARCH PAPERS : THE KINETICS ON THE BIOLOGICAL REACTION IN MEMBRANE BIOREACTOR (MBR) WITH GRAVITATIONAL AND TRANSVERSAL FILTRATION

  • Jang, Nam-J.;Hwang, Moon-H.;Yeo, Young-H.;Shim, Wang-G.;S. Vigneswaran;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.9 no.5
    • /
    • pp.238-247
    • /
    • 2004
  • The objective of this study was to develop kinetic model for the MBR and investigate kinetic characteristics of the gravitational flow transverse direction MBR system. Kinetic model was derived by mass balance of substratc and biomass combined with empirical membranc filtration rerm for the MBR. To find kinctic values, permeale flux and COD removal were analyzed through the laboratory, MBR operation as different solids retention times. Permeate flux was ranged 2.5-5.0 LMH (L/m$^2$/hr) as sludge characteristics in each run. Although the soluble COD in the bioreactor was changed, the effluent COD was stable as average 99% removal rate during the experimental periods. Y$_g$ of this MBR system was higher than those of cross-flow MBR processes. The kinetics of this MBR showed that smaller k, larger b, and larger K$_s$ values than the conventional activated sludge process. These results indicated that substrate was used for cell maintenance rather than growth in this MBR system.

Fenton난s Reagent Oxidation of Refractory Organics in Petrochemical Plant Effluent (석유화학공장 방류수내 난분해성 유기물의 Fenton 산화처리)

  • Lee, Kyu-Hoon;Jung, Dae-Young;Park, Tae-Joo
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.51-59
    • /
    • 1996
  • The purpose of this study was to evaluate the partial oxidation of the biological treatment plant effluents using Fenton's reagent as a pretreatment step prior to a tertiary biological oxidation of these effluents. Fenton's reagent was evaluated as a pretreatment process for inhibitory or refractory organics. Based on the Fenton oxidation system, the petrochemical wastewater treatment plant effluent was shown to have significant improvement in toxicity after oxidation with hydrogen peroxide. For example, at ranee of 42 ∼ 184 mg/L COD of petrochemical plant effluents, the COD removal efficiencies were from 38.2% to 60.1% after reaction with hydrogen peroxide 200 mg/L and Fe2+ 100 mg/L and reaction time was 30 minutes. The total TOC reduction were about 15.8∼22.4% with same test condition and difference between the overall removal rate and BOD/COD ratio after Fenton's oxidation estabilished in the biodegradation and otherwise meets the discharge standard or reuse for cooling tower make-up water.

  • PDF

Enhanced biological effects of Phe140Asn, a novel human granulocyte colony-stimulating factor mutant, on HL60 cells

  • Chung, Hee-Kyoung;Kim, Sung-Woo;Byun, Sung-June;Ko, Eun-Mi;Chung, Hak-Jae;Woo, Jae-Seok;Yoo, Jae-Gyu;Lee, Hwi-Cheul;Yang, Byoung-Chul;Kwon, Moo-Sik;Park, Soo-Bong;Park, Jin-Ki;Kim, Kyung-Woon
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.686-691
    • /
    • 2011
  • Granulocyte colony-stimulating factor (G-CSF) is a cytokine secreted by stromal cells and plays a role in the differentiation of bone marrow stem cells and proliferation of neutrophils. Therefore, G-CSF is widely used to reduce the risk of serious infection in immunocompromised patients; however, its use in such patients is limited because of its non-persistent biological activity. We created an N-linked glycosylated form of this cytokine, hG-CSF (Phe140Asn), to assess its biological activity in the promyelocyte cell line HL60. Enhanced biological effects were identified by analyzing the JAK2/STAT3/survivin pathway in HL60 cells. In addition, mutant hG-CSF (Phe140Asn) was observed to have enhanced chemoattractant effects and improved differentiation efficiency in HL60 cells. These results suggest that the addition of N-linked glycosylation was successful in improving the biological activity of hG-CSF. Furthermore, the mutated product appears to be a feasible therapy for patients with neutropenia.

Heavy Metal Stabilization in Soils using Waste Resources - A Critical Review (폐자원을 이용한 중금속 오염토양의 안정화 - 총설)

  • Lim, Jung Eun;Moon, Deok Hyun;Kim, Kwon-Rae;Yang, Jae E;Lee, Sang Soo;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.2
    • /
    • pp.157-174
    • /
    • 2015
  • Stabilization of metals in contaminated soils using various waste materials has been reported. Alkaline materials (limes, shells, industrial byproducts, etc.), phosphorous (P) containing materials (animal bones, phosphate rock, etc.), organic materials (composts, manures, biochars, etc.) and others (zerovalent iron, zeolite, etc.) were widely evaluated to ensure its effectiveness/applicability of stabilization of metals in soils. Stabilization mechanisms of those materials above were partially revealed, but the related literatures are still lacked and not sufficient for approaching to long-term stability/applicability in the field. The aims of this review are to summarize current knowledge of metal stabilization in contaminated soils using various waste materials and to suggest a direction for future field research.

Analysis for Compatibility of Gyejibongnyeong-hwan and Its Biological Activities (계지복령환(桂枝茯苓丸)의 배오(配伍)분석과 그 생리활성)

  • Kim, Do Hoy;Jung, Yang Sam;Yoon, Michung;Yoon, Yoosik;Shin, Soon Shik
    • Herbal Formula Science
    • /
    • v.24 no.4
    • /
    • pp.353-365
    • /
    • 2016
  • Objectives : We analysed Gyejibongnyeong-hwan's compatibility principle and investigated biological activities by categorizing with molecular level, cellular level, animal level and human level based on Korean study for this formula. Methods : Gyejibongnyeong-hwan's compatibiltity principle was examined by the system of chief, deputy, assistant, and envoy. We looked into studies that presented in Korea from 1956 to 2016 about Gyejibongnyeong-hwan through Korea Institute of Oriental Medicine, Korean medicine information system (OASIS). Then classify into molecular level, cellular level, animal level and human level to analyse. Results : According to the system of chief, deputy, assistant, and envoy, chief herb is Cinnamomi Ramulus, deputy herb is Persicae Semen, assistant herb is Moutan Cortex, Paeoniae Radix, Poria, and envoy herb is Mel. Biological activities can be detected in transcription factors, enzymes, and inflammatory mediators for molecular level. For cellular level, it can be determined in human uterine endometrial cancer cell, human hepatocarcinoma cell, and human platelets. In mouse and rats for animal level, in overian cystoma, menorrhalgia, quality of life improvement in postmenopausal women, and blood stasis with motor vehicle accident for human level, biological activities was caught. Conclusions : From above results, Gyejibongnyeong-hwan is composed in line with the system of chief, deputy, assistan, and envoy. Biological activities are effective to improvement of menorrhalgia, anti-cancer, anti-oxidative, anti-inflammation, improvement of atherosclerosis, analgesic, anti-convulsion, wound healing, and improvement of liver function.

InhA-Like Protease Secreted by Bacillus sp. S17110 Inhabited in Turban Shell

  • Jung, Sang-Chul;Paik, Hyoung-Rok;Kim, Mi-Sun;Baik, Keun-Sik;Lee, Woo-Yiel;Seong, Chi-Nam;Choi, Sang-Ki
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.402-408
    • /
    • 2007
  • A strain producing a potent protease was isolated from turban shell. The strain was identified as Bacillus sp. S17110 based on phylogenetic analysis. The enzyme was purified from culture supernatant of Bacillus sp. S17110 to homogeneity by ammonium sulfate precipitation, SP-Sepharose, and DEAE-Sepharose anion exchange chromatography. Protease activity of the purified protein against casein was found to be stable at pH 7 to pH 10 and around $50^{\circ}C$. Approximately 70% of proteolytic activity of the enzyme was detected either in the presence of 100 mM SDS or Tween 20. The enzyme activity was enhanced in the presence of $Ca^{2+},\;Zn^{2+},\;Mg^{2+}$, but was inhibited by EDTA, indicating that it requires metal for its activity. The purified enzyme was found to be a monomeric protein with a molecular mass of 75 kDa, as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography. The purified enzyme was analyzed through peptide fingerprint mass spectra generated from matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) and a BLAST search, and identified as immune inhibitor A (inhA) deduced from nucleotide sequence of B. cereus G9241. Since InhA was identified as protease that cleave antibacterial proteins found in insect, inhA-like protease purified from Bacillus sp. S17110 might be pathogenic to sea invertebrates.

A report of 26 unrecorded bacterial species in Korea, isolated from urban streams of the Han River watershed in 2018

  • Joung, Yochan;Jang, Hye-Jin;Kim, Myeong Woon;Hwang, Juchan;Song, Jaeho;Cho, Jang-Cheon
    • Journal of Species Research
    • /
    • v.8 no.3
    • /
    • pp.249-258
    • /
    • 2019
  • Owing to a distinct environmental regime and anthropogenic effects, freshwater bacterial communities of urban streams are considered to be different from those of large freshwater lakes and rivers. To obtain unrecorded, freshwater bacterial species in Korea, water and sediment samples were collected from various urban streams of the Han River watershed in 2018. After plating the freshwater samples on R2A agar, approximately 1000 bacterial strains were isolated from the samples as single colonies and identified using 16S rRNA gene sequence analyses. A total of 26 strains, with >98.7% 16S rRNA gene sequence similarity with validly published bacterial species but not reported in Korea, were determined to be unrecorded bacterial species in Korea. The unrecorded bacterial strains were phylogenetically diverse and belonged to four phyla, six classes, 12 orders, 16 families, and 21 genera. At the generic level, the unreported species were assigned to Nocardioides, Streptomyces, Microbacterium, Kitasatospora, Herbiconiux, Corynebacterium, and Microbacterium of the class Actinobacteria; Paenibacillus and Bacillus of the class Bacilli; Caulobacter, Methylobacterium, Novosphingobium, and Porphyrobacter of the class Alphaproteobacteria; Aquabacterium, Comamonas, Hydrogenophaga, Laribacter, Rivicola, Polynucleobacter, and Vogesella of the class Betaproteobacteria; Arcobacter of the class Epsilonproteobacteria; and Flavobacterium of the class Flavobacteriia. The details of the 26 unreported species, including Gram reaction, colony and cell morphology, biochemical properties, and phylogenetic position are also provided in the strain descriptions.

RNA-Seq De Novo Assembly and Differential Transcriptome Analysis of Korean Medicinal Herb Cirsium japonicum var. spinossimum

  • Roy, Neha Samir;Kim, Jung-A;Choi, Ah-Young;Ban, Yong-Wook;Park, Nam-Il;Park, Kyong-Cheul;Yang, Hee-sun;Choi, Ik-Young;Kim, Soonok
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.34.1-34.9
    • /
    • 2018
  • Cirsium japonicum belongs to the Asteraceae or Compositae family and is a medicinal plant in Asia that has a variety of effects, including tumour inhibition, improved immunity with flavones, and antidiabetic and hepatoprotective effects. Silymarin is synthesized by 4-coumaroyl-CoA via both the flavonoid and phenylpropanoid pathways to produce the immediate precursors taxifolin and coniferyl alcohol. Then, the oxidative radicalization of taxifolin and coniferyl alcohol produces silymarin. We identified the expression of genes related to the synthesis of silymarin in C. japonicum in three different tissues, namely, flowers, leaves, and roots, through RNA sequencing. We obtained 51,133 unigenes from transcriptome sequencing by de novo assembly using Trinity v2.1.1, TransDecoder v2.0.1, and CD-HIT v4.6 software. The differentially expressed gene analysis revealed that the expression of genes related to the flavonoid pathway was higher in the flowers, whereas the phenylpropanoid pathway was more highly expressed in the roots. In this study, we established a global transcriptome dataset for C. japonicum. The data shall not only be useful to focus more deeply on the genes related to product medicinal metabolite including flavolignan but also to study the functional genomics for genetic engineering of C. japonicum.

Review of Advances in Biological $CO_2$Mitigation Technology

  • Lee, Jin-Suk;Lee, Joon-Pyo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.354-359
    • /
    • 2003
  • $CO_2$fixation by microalgae has emerged as a promising option for $CO_2$mitigation. In-tensive research work has been carried out to develop a feasible system for removing $CO_2$from industrial exhaust gases. However, there are still several challenging points to overcome in order to make the process more practical. In this paper, recent research activities on three key technologies of biological $CO_2$fixation, an identification of a suitable algal strain, development of high efficient photobioreactor and utilization of algal cells produced, are described. Finally the barriers, progress, and prospects of commercially developing a biological $CO_2$fixation process are summarized.

Biological Activities and Partial Characterization of Beauveria bassiana Mycelium

  • Park, Sung-Yong;Song, Hyuk-Hwan;Lee, Yong-Gab;Yoon, Cheol-Sik;Lee, Chan
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.95-101
    • /
    • 2008
  • Some biological activities of Beauveria bassiana were studied to elucidate pharmacological function of B. bassiana-infected larva of the silkworm. The mycelium consisted mainly of carbohydrate (65.8%), followed by protein (15.9%) and fat (8.3%). Glucose (68.8%), mannose (7.1%), and galactose (6.1%) were major components in carbohydrates. Ten amino acids including glutamine, threonine, valine, aspartic acid, alanine, leucine, serine, glycine, arginine, and isoleucine were found in protein as major amino acids. Various extracts were prepared from the freeze-dried mycelium of B. bassiana by systemic extraction and their biological activities were investigated. Among tested fractions, the hot-water extract (HW) contributed significantly to the anti-coagulant activity, anti-complementary activity, and stimulation of intestinal immune system. The methanol extract (ME) increased acetylcholinesterase (AChE) inhibition activity and reactive oxygen species (ROS) scavenging activity.