• Title/Summary/Keyword: Biological Engineering

Search Result 9,444, Processing Time 0.038 seconds

First Record of Snapping Shrimp, Prionalpheus sulu (Decapoda: Caridea: Alpheidae) in Korea

  • Koo, Hye-Young;Kim, Won
    • Animal Systematics, Evolution and Diversity
    • /
    • v.25 no.2
    • /
    • pp.197-199
    • /
    • 2009
  • The alpheid shrimps collected from Jejudo Island turned out to be a species belonging to the genus Prionalpheus which is an unreported genus from Korean waters. In this paper, Prionalpheus sulu is reported for the first time from Korean waters with description and illustration.

Machine Learning in FET-based Chemical and Biological Sensors: A Mini Review

  • Ahn, Jae-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This mini review summarizes some of the recent advances in machine-learning (ML)-driven chemical and biological sensors. Specific focus is on field-effect-transistor (FET)-based sensors with a description of their structures and detection mechanisms. Key ML techniques are briefly reviewed for an audience not familiar with the basic principles. We mainly discuss two aspects: (1) data analysis based on ML and (2) ML applied to sensor design. In conclusion, the challenges and opportunities for the advancement of ML-based sensors are briefly considered.

Occurrence in Korea of Rust Disease on Tilia mandshurica Caused by Pucciniastrum tiliae

  • Jae Sung Lee;Ji Hyun Park;Young Joon Choi;Hyeon Dong Shin
    • The Korean Journal of Mycology
    • /
    • v.51 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • Tilia mandshurica trees with rust symptoms have consistently been noticed during disease surveys in Korea since 2006. Based on the morphological examination and molecular sequence analysis of the internal transcribed spacer and large subunit of ribosomal DNA, Pucciniastrum tiliae was identified as the causal fungus of rust disease. This is the first report of P. tiliae infection on T. mandshurica in Korea.

Molecular Dynamics Simulation Study of Lipase-catalyzed Esterification of Structural Butanol Isomers in Supercritical Carbon Dioxide (초임계 이산화탄소에서 리파아제-효소를 이용한 부탄올 구조이성질체의 에스테르화 반응의 분자 동역학 연구)

  • Kwon, Cheong-Hoon;Jeong, Jeong-Yeong;Song, Kwang Ho;Kim, Seon Wook;Kang, Jeong-Won
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.643-649
    • /
    • 2007
  • Lipase-catalyzed esterification of structural butanol isomers and n-butyric acid was investigated in supercritical carbon dioxide. The experiments were performed in a high pressure cell for 5 hrs with a stirring rate of 150 rpm at 323.15 K and 130 bar. The Candida Antarctica lipase B (CALB) was used in whole system as a catalyst. The experimental results were analyzed by GC-FID using a INNOWax capillary column. The conversion yield and the tendency of the esterification in supercritical carbon dioxide were compared with estimated results by molecular dynamics simulation. Based on the Ping-Pong Bi-Bi mechanism with competitive inhibition, each step of the reaction was optimized; using this result the transition state was predicted. Conformational preference of isomers was also analyzed using molecular dynamics simulations. This kind of approach will be further extended to the prediction of enzyme-catalyzed reactions using computers.

Optimization of Anion-exchange Chromatography for the Separation of Agarase from Culture Broth of Pseudoalteromonas sp. (Pseudoalteromonas sp. 배양액으로부터 아가레이즈 분리를 위한 음이온교환 크로마토그래피 최적화)

  • Kim, Yu-Na;Lee, Jae-Ran;Kim, Mu-Chan;Kim, Sung-Bae;Chang, Yong-Keun;Hong, Soon-Kwang;Kim, Chang-Joon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.840-845
    • /
    • 2011
  • Degradation products of agarose are biologically active and thus used as an ingredient in pharmaceuticals or functional cosmetics. Furthermore, it has been strongly considered as a substrate for bio-ethanol fermentation. Recently, we isolated new agarase-producing microorganism, Pseudoalteromonas sp. from south sea of Korea. In this study, we aimed to separate and purify the agarase from culture broth of this strain. Separation of agarase was performed by ion- exchange chromatography on DEAE-Sepharose resin. Equilibrium pH and volume ratio of resin to the amount of protein were optimized for the efficient adsorption of protein. 410 ${\mu}g$ of protein was completely adsorbed to 3 mL of resin at pH 7.5. The total amount of eluted protein increased as NaCl concentration increased to 400 mM at isocratic elution. Agarase was separated by linear gradient elution of NaCl (0~1,000 mM). Three major protein peaks were observed and the presence or absence of agarase in these eluted proteins was measured by Lugol's staining technique. Only six eluted protein fractions showed strong agarase activity.

Electrochemical Ion Separation Technology for Carbon Neutrality (탄소중립을 지향하는 전기화학적 이온 분리(EIONS) 기술)

  • Hwajoo Joo;Jaewuk Ahn;Sung-il Jeon;Jeyong Yoon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.331-346
    • /
    • 2023
  • Recently, green processes that can be directly used in an energy-efficient and electrified society to achieve carbon neutrality are attracting attention. Existing heat and pressure-based desalination technologies that consume tremendous amounts of energy are no exception, and the growth of next-generation electrochemical-based desalination technologies is remarkable. One of the most representative electrochemical desalination technologies is electrochemical ion separation (EIONS) technology, which includes capacitive desalination (CDI) and battery desalination (BD) technology. In the research field of EIONS, various system applications have been developed to improve system performance, such as capacity and cyclability. However, it is very difficult to understand the meaning and novelty of these applications immediately because there are only a few papers that summarize the research background for domestic readers. Therefore, in this review paper, we aim to describe the technological advances and individual characteristics of each system in clear and specific detail about the latest EIONS research. The driving principle, research background, and strengths and weaknesses of each EIONS system are explained in order. In addition, this paper concluded by suggesting the future development and research direction of EIONS. Researchers who are just beginning out in EIONS research can also benefit from this study because it will help them understand the research trend.

Sewage Treatment using Aerated Submerged Biological Filter(ASBF) (호기성 침지형 생물막 여과장치를 이용한 오수처리)

  • Park, Jong-Woong;Song, Ju-seok
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.523-532
    • /
    • 2000
  • The purpose of this study was to investigate the effects of the hydraulic retention time (HRT) and organic loading rate (OLR) on microbial characteristics and treatment efficiency in sewage treatment using aerated submerged biological filter (ASBF) reactor. This reactor combines biodegradation of organic substrates by fixed biomass with a physical separation of biomass by filtration in a single reactor. Both simulated wastewater and domestic wastewater were used as feed solutions. The experimental conditions were a temperature of 17 to $27^{\circ}C$, a hydraulic retention time of 1 to 9hr, an organic loading rate of 0.47 to $3.84kg\;BOD/m^3{\cdot}day$ in ASBF reactor. This equipment could obtain a stable effluent quality in spite of high variation of influent loading rate. Total biomass concentration. biofilm thickness and biofilm mass increased an exponential function according to the increasing OLR. The relationships between water content and biofilm density were in inverse proportion. The percentage of backwash water to influent flow was almost 9%. The separation efficiency of biomass was the percentage of 91 to 92 in ASBF reactor. The sludge production rates in feed solutions of simulated wastewater and domestic wastewater were 0.14~0.26 kg VSS/kg BODrem, 0.43~0.48 kg VSS/kg BODrem, respectively.

  • PDF