Browse > Article

Molecular Dynamics Simulation Study of Lipase-catalyzed Esterification of Structural Butanol Isomers in Supercritical Carbon Dioxide  

Kwon, Cheong-Hoon (Department of Chemical and Biological Engineering, Korea University)
Jeong, Jeong-Yeong (Department of Chemical and Biological Engineering, Korea University)
Song, Kwang Ho (Department of Chemical and Biological Engineering, Korea University)
Kim, Seon Wook (The School of Electrical Engineering, Korea University)
Kang, Jeong-Won (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Applied Chemistry for Engineering / v.18, no.6, 2007 , pp. 643-649 More about this Journal
Abstract
Lipase-catalyzed esterification of structural butanol isomers and n-butyric acid was investigated in supercritical carbon dioxide. The experiments were performed in a high pressure cell for 5 hrs with a stirring rate of 150 rpm at 323.15 K and 130 bar. The Candida Antarctica lipase B (CALB) was used in whole system as a catalyst. The experimental results were analyzed by GC-FID using a INNOWax capillary column. The conversion yield and the tendency of the esterification in supercritical carbon dioxide were compared with estimated results by molecular dynamics simulation. Based on the Ping-Pong Bi-Bi mechanism with competitive inhibition, each step of the reaction was optimized; using this result the transition state was predicted. Conformational preference of isomers was also analyzed using molecular dynamics simulations. This kind of approach will be further extended to the prediction of enzyme-catalyzed reactions using computers.
Keywords
structural butanol isomers; esterification; supercritical carbon dioxide; CALB; molecular simulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 M. M. Shamel, K. B. Ramachandran, M. Hasan, and S. Al-Zuhair, Biochem. Eng. J., 34, 228 (2007)
2 I. Vallikivi, L. Fransson, K. Hult, I. Järving, T. Pehk, N. Samel, V. Tugu, L. Villo, and O. Parve, J. Mol. Catal. B: Enzym., 35, 62 (2005)   DOI   ScienceOn
3 A. Magnusson, Thesis, School of Biotechnology, Royal Institute of Technology, Sweden (2005)
4 CAChe Workspace Ver. 6.1. Fujitsu, (2003)
5 J. J. P. Stewart, J. Comput. Chem., 10, 209 (1989)   DOI
6 Discovery Studio Modeling version 1.7. Accelrys Inc. (2007)
7 A. Chojnacka, R. Obara, and C. Wawrzenczyk, Tetrahedron:Asym- metry, 18, 101 (2007)
8 HyperChem Release 7.0 for windows. Hypercube Inc. (2002)
9 C. I. Sainz-Diaz, G. Wohlfahrt, E. Nogoceke, A. HernAndez- Laguna, Y. G. Smeyers, and U. Menge, Theochem-J. Mol. Struct., 390, 225 (1997)
10 S. H. Krishna and N. G. Karanth, Biochimica et Biophysica Acta, 1547, 262 (2001)   DOI   ScienceOn
11 D. F. Taber, M. Xu, and J. C. Hartnett, J. Am. Chem. Soc., 124, 13121 (2002)   DOI   ScienceOn
12 S. K. Son, Master Thesis, Korea University, Seoul, Korea (2006)
13 S. Raza, L. Fransson, and K. Hult, Protein Science, 10, 329 (2001)   DOI   ScienceOn
14 J. F. Cramer, M. S. Dueholm, S. B. Nielsen, D. S. Pedersen, R. Wimmer, and L. H. Pedersen, Enzyme Microb. Technol., 41, 346 (2001)
15 J. Gao, S. Ma, D. T. Major, K. Nam, J. Pu, and D. G. Truhlar, 2006. Chem. Rev., 106, 3188 (2006)   DOI   ScienceOn
16 M. J. Field, J. Comput. Chem., 23, 48 (2002)   DOI   ScienceOn
17 G. Monard, X. Prat-Resina, A. González-Lafont, and J. M. Lluch, Inter. J. Quantum Chemistry, 93, 229 (2003)
18 I. Vallikivi, Ü. Lille, A. Lookene, A. Metsala, P. Sikk, V. Tõugu, H. Vija, L. Villo, and O. Parve, J. Mol. Catal. B: Enzym, 22, 279 (2003)   DOI   ScienceOn
19 M. Garcia-Viloca, D. G. Truhlar, and J. Gao, Biochemistry, 42, 13558 (2003)
20 A. J. Mulholland, Drug Discov. Today, 10, 1393 (2005)   DOI   ScienceOn
21 J. Uppenberg, M. T. Hansen, S. Patkar, and T. A. Jones, Structure, 2, 293 (1994)
22 C. H. Kwon, D. Y. Shin, J. H. Lee, S. W. Kim, and J. W. Kang, J. Microbiol. Biotechnol, 17, 1098 (2007)   과학기술학회마을