• Title/Summary/Keyword: Biological Engineering

Search Result 9,444, Processing Time 0.032 seconds

Synthetic Bacteria for Therapeutics

  • Lam VO, Phuong N.;Lee, Hyang-Mi;Na, Dokyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.845-855
    • /
    • 2019
  • Synthetic biology builds programmed biological systems for a wide range of purposes such as improving human health, remedying the environment, and boosting the production of valuable chemical substances. In recent years, the rapid development of synthetic biology has enabled synthetic bacterium-based diagnoses and therapeutics superior to traditional methodologies by engaging bacterial sensing of and response to environmental signals inherent in these complex biological systems. Biosynthetic systems have opened a new avenue of disease diagnosis and treatment. In this review, we introduce designed synthetic bacterial systems acting as living therapeutics in the diagnosis and treatment of several diseases. We also discuss the safety and robustness of genetically modified synthetic bacteria inside the human body.

Effect of alpha-tocopheryl acetate, retinyl palmitate, and phytantriol on hair protection

  • Ki Young Ahn;Hong Jong Song;Dong Chung Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.307-312
    • /
    • 2022
  • A hair essence containing α-tocopheryl acetate, retinyl palmitate, and phytantriol (TRP-hair essence) was prepared. TRP-hair essence was excellent in thermal stability to the extent that it did not harden at all even at 210 ℃. TRP-hair essence potently protected the hair from heat stress, significantly reducing the protein leakage in heat-treated hair (p <0.001). Treatment of TRP-hair essence to dyed human hair significantly protected hair against heat stress (p <0.05) as well as improved hair cuticle and color persistence (p <0.05). In addition, as a result of directly treating human hair with TRP-hair essence, the cuticle and tensile strength of human hair were significantly improved (p <0.05). These results suggest that TRP-hair essence can be effective for hair protection and hair quality improvement.

A RADAR SYSTEM TO DETECT SOIL SURFACE UNDER PLANT/VEGETATION

  • Shin, B.;R.B.Dodd;Han, Y.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.363-372
    • /
    • 1993
  • For more accurate height/depth control of the agricultural implements , the soil surface as a reference position should be measured as accurate as possible. A new measurement system using microwave was developed to detect the true soil surface even under plant and/or vegetation. Two-frequency continuous-wave radar was used as the measurement system. It could estimate the distance to the target by measuring the phase difference between two different frequencies continuous-waves which reflected on the target surface. The system performance was evaluated on the barely field where the average height of barley was 91.5 cm. The experimental results showed that the system performance was not affected by the existence of barely. The maximum measurement errors were 8.91 com and 8.44cm for two different experimental plots.

  • PDF

Common-path Optical Interferometry for Stabilized Dynamic Contrast Imaging: A Feasibility Study

  • Seung-Jin, Lee;Young-Wan, Choi;Woo June, Choi
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.65-72
    • /
    • 2023
  • The motion of organelles inside a cell is an important intrinsic indicator for assessing cell physiology and tissue viability. Dynamic contrast full-field optical coherence tomography (D-FFOCT) is a promising imaging technology that can visualize intracellular movements using the variance of temporal interference signals caused by biological motions. However, double-path interferometry in D-FFOCT can be highly vulnerable to surrounding noise, which may cause turbulence in the interference signals, contaminating the sample dynamics. Therefore, we propose a method for stabilized D-FFOCT imaging in noisy environments by using common-path interferometry in D-FFOCT. A comparative study shows that D-FFOCT with the proposed method achieves stable dynamic contrast imaging of a scattering phantom in motion that is over tenfold more noise-insensitive compared to the conventional one, and thus this imaging capability can provide cleaner motion contrast images. With the proposed approach, the intracellular dynamics of biological samples are imaged and monitored.

A Python-based educational software tool for visualizing bioinformatics alignment algorithms

  • Elis Khatizah;Hee-Jo Nam;Hyun-Seok Park
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.15.1-15.4
    • /
    • 2023
  • Bioinformatics education can be defined as the teaching and learning of how to use software tools, along with mathematical and statistical analysis, to solve biological problems. Although many resources are available, most students still struggle to understand even the simplest sequence alignment algorithms. Applying visualizations to these topics benefits both lecturers and students. Unfortunately, educational software for visualizing step-by-step processes in the user experience of sequence alignment algorithms is rare. In this article, an educational visualization tool for biological sequence alignment is presented, and the source code is released in order to encourage the collaborative power of open-source software, with the expectation of further contributions from the community in the future. Two different modules are integrated to enable a student to investigate the characteristics of alignment algorithms.

Investigation of Temperature Effect on Electrode Reactions of Molten Carbonate Electrolysis Cells and Fuel Cells using Reactant Gas Addition Method

  • Samuel Koomson;Choong-Gon Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.253-261
    • /
    • 2024
  • The impact of temperature on electrode reactions in 100 cm2 molten carbonate cells operating as Fuel Cells (FC) and Electrolysis Cells (EC) was examined using the Reactant Gas Addition (RA) method across a temperature range of 823 to 973 K. The RA findings revealed that introduction of H2 and CO2, reduced the overpotential at Hydrogen Electrode (HE) in both the modes. However, no explicit temperature dependencies were observed. Conversely, adding O2 and CO2 to the Oxygen Electrode (OE) displayed considerable temperature dependencies in FC mode which can be attributed to increased gas solubility due to the electrolyte melting at higher temperatures. In EC mode, there was no observed temperature dependence for overpotential. Furthermore, the addition of O2 led to a decrease in overpotential, while CO2 addition resulted in an increased overpotential, primarily due to changes in the concentration of O2 species.

Antimicrobial Activity and Mechanism of Various Nanoparticles (나노 입자에 의한 미생물 불활성화 특성 및 메카니즘)

  • Kim, Jee-Yeon;Park, Hee-Jin;Yoon, Je-Yong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.366-371
    • /
    • 2010
  • Accompanying the rapid advance of nanotechnology, various nano-particles have shown promise as strong antimicrobial agents against a broad spectrum of microorganisms. These nanoparticles also have potential applications in medical devices, water treatments systems, environmental sensors and so on. However, with increasing concerns about the impact of engineered nanoparticles, many researchers are recently reporting the cytotoxicity of nanoparticles. In this review paper, we summarized the antimicrobial activities and mechanisms of various kinds of engineered nanoparticles to imprale understanding about these characteristics of nanoparticles.

Development of micro- and nanostructures mimicking natural leaf surfaces for controlled hydrophilic and hydrophobic property

  • Kim, Daun;Park, Sunho;Lee, Dohyeon;Nam, Hyeun;Kim, Jangho
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.110-110
    • /
    • 2017
  • Biological systems offer unique principles for the design and fabrication of engineering platforms (i.e., popularly known as "Biomimetics") for various applications in many fields. For example, the lotus leaves exhibit unique surfaces consisting of evenly distributed micro and nanostructures. These unique surfaces of lotus leaves have the ability of superhydrophobic property to avoid getting wet by the surrounding water (i.e., Lotus effect). Inspired by the surface topographies of lotus leaves, the artificial superhydrophobic surfaces were developed using various micro- and nanoengineering. Here, we propose new platforms that can control hydrophilic and hydrophobic property of surfaces by mimicking micro- and nanosurfaces of various natural leaves such as common camellia, hosta plantaginea, and lotus. Using capillary force lithography technology and polymers in combination with biomimetic design principle, the unique micro- and nanostructures mimicking natural surfaces of common camellia, hosta plantaginea, and lotus were designed and fabricated. We also demonstrated that the replicated polymeric surfaces had different hydrophilic and hydrophobic properties according to the mimicking the natural leaf surfaces, which could be used as a simple, but powerful methodology for design and fabrication of controlled hydrophilic and hydrophobic platforms for various applications in the field of agriculture and biological engineering.

  • PDF

Mobile Phase Compositions for Ceramide III by Normal Phase High Performance Liquid Chromatography

  • Hong, Seung-Pyo;Lee, Chong-Ho;Kim, Se-Kyung;Yun, Hyun-Shik;Lee, Jung-Heon;Row, Kyung-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.1
    • /
    • pp.47-51
    • /
    • 2004
  • Ceramide III was prepared by the cultivation of Saccharomyces cerevisiae. Ceramide III was partitioned from the cell extracts by solvent extraction and analyzed by Normal Phase High Performance Liquid Chromatography (NP-HPLC) using Evaporative Light Scattering Detector (ELSD). We experimentally determined the mobile phase composition to separate ceramide III with NP-HPLC. Three binary mobile phases of n-hexane/ethanol, n-hexane/lsoprophyl Alcohol(IPA) and n-hexane/n-butanol and one ternary mobile phase of n-hexane/IPA/methanol were demonstrated. For the binary mobile phase of n-hexane/ethanol, the first mobile phase composition, 95/5(v/v), was step-increased to 72/23(v/v) at 3 min. In the binary mobile phase, the retention time of ceramide III was 7.87min, while it was 4.11 min respectively in the ternary system, where the mobile phase composition of n-hexane/IPA/methanol, 85/7/8(v/v/v), was step-increased to 75/10/15(v/v/v) at 3 min. However, in the ternary mobile phase, the more peak area of ceramide III was observed.