Browse > Article
http://dx.doi.org/10.4014/jmb.1904.04016

Synthetic Bacteria for Therapeutics  

Lam VO, Phuong N. (School of Integrative Engineering, Chung-Ang University)
Lee, Hyang-Mi (School of Integrative Engineering, Chung-Ang University)
Na, Dokyun (School of Integrative Engineering, Chung-Ang University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.6, 2019 , pp. 845-855 More about this Journal
Abstract
Synthetic biology builds programmed biological systems for a wide range of purposes such as improving human health, remedying the environment, and boosting the production of valuable chemical substances. In recent years, the rapid development of synthetic biology has enabled synthetic bacterium-based diagnoses and therapeutics superior to traditional methodologies by engaging bacterial sensing of and response to environmental signals inherent in these complex biological systems. Biosynthetic systems have opened a new avenue of disease diagnosis and treatment. In this review, we introduce designed synthetic bacterial systems acting as living therapeutics in the diagnosis and treatment of several diseases. We also discuss the safety and robustness of genetically modified synthetic bacteria inside the human body.
Keywords
Synthetic biology; synthetic bacterium-based therapies; living therapeutics; disease diagnosis; metabolic diseases; cancer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Daeffler KN, Galley JD, Sheth RU, Ortiz-Velez LC, Bibb CO, Shroyer NF, et al. 2017. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol. Syst. Biol. 13: 923.   DOI
2 Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, et al. 2010. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467: 426-429.   DOI
3 Jackson MR, Melideo SL, Jorns MS. 2012. Human sulfide: quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry 51: 6804-6815.   DOI
4 Hensel M, Hinsley AP, Nikolaus T, Sawers G, Berks BC. 1999. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol. Microbiol. 32: 275-287.   DOI
5 Heinzinger NK, Fujimoto SY, Clark MA, Moreno MS, Barrett EL. 1995. Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J. Bacteriol. 177: 2813-2820.   DOI
6 Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. 2014. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 104: Unit 15.25.
7 Danino T, Prindle A, Kwong GA, Skalak M, Li H, Allen K, et al. 2015. Programmable probiotics for detection of cancer in urine. Sci. Transl. Med. 7(289): 289ra84.   DOI
8 Liang Q, Chiu J, Chen Y, Huang Y, Higashimori A, Fang J, et al. 2017. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin. Cancer Res. 23: 2061-2070.   DOI
9 Brader P, Stritzker J, Riedl CC, Zanzonico P, Cai S, Burnazi EM, et al. 2008. Escherichia coli Nissle 1917 facilitates tumor detection by positron emission tomography and optical imaging. Clin. Cancer Res. 14: 2295-2302.   DOI
10 Bull MJ, Jolley KA, Bray JE, Aerts M, Vandamme P, Maiden MC, et al. 2014. The domestication of the probiotic bacterium Lactobacillus acidophilus. Sci. Rep. 4: 7202.   DOI
11 Dou J, Bennett MR. 2018. Synthetic biology and the gut microbiome. Biotechnol. J. 13: e1700159.   DOI
12 Park W. 2018. Gut microbiomes and their metabolites shape human and animal health. J. Microbiol. 56: 151-153.   DOI
13 Derman AI, Becker EC, Truong BD, Fujioka A, Tucey TM, Erb ML, et al. 2009. Phylogenetic analysis identifies many uncharacterized actin-like proteins (Alps) in bacteria: regulated polymerization, dynamic instability and treadmilling in Alp7A. Mol. Microbiol. 73: 534-552.   DOI
14 Lee ES, Song EJ, Nam YD, Lee SY. 2018. Probiotics in human health and disease: from nutribiotics to pharmabiotics. J. Microbiol. 56: 773-782.   DOI
15 Wright O, Stan GB, Ellis T. 2013. Building-in biosafety for synthetic biology. Microbiology 159: 1221-1235.   DOI
16 Wang F, Zhang W. 2019. Synthetic biology: Recent progress, biosafety and biosecurity concerns, and possible solutions. J. Biosafety Biosecurity 1: 22-30.   DOI
17 Cameron DE, Bashor CJ, Collins JJ. 2014. A brief history of synthetic biology. Nat Rev. Microbiol. 12: 381-390.   DOI
18 Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, Martin HG. 2016. Synthetic and systems biology for microbial production of commodity chemicals. NPJ Syst. Biol. Appl. 2: 16009.   DOI
19 Stritzker J, Weibel S, Hill PJ, Oelschlaeger TA, Goebel W, Szalay AA. 2007. Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Int. J. Med. Microbiol. 297: 151-162.   DOI
20 Gerdes K. 1988. The Parb (Hok Sok) Locus of plasmid-R1-a general-purpose plasmid stabilization system. Bio-Technol. 6: 1402-1405.
21 Claesen J, Fischbach MA. 2015. Synthetic microbes as drug delivery systems. ACS Synth. Biol. 4: 358-364.   DOI
22 Hamady ZZ, Scott N, Farrar MD, Lodge JP, Holland KT, Whitehead T, et al. 2010. Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut 59: 461-469.   DOI
23 Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K, Meyer zum Buschenfelde KH. 1995. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin. Exp. Immunol. 102: 448-455.   DOI
24 Cook DP, Gysemans C, Mathieu C. 2017. Lactococcus lactis as a versatile vehicle for tolerogenic immunotherapy. Front. Immunol. 8: 1961.   DOI
25 Cheng F, Luozhong S, Yu H, Guo Z. 2019. Biosynthesis of chondroitin in engineered Corynebacterium glutamicum. J. Microbiol. Biotechnol. 29: 392-400.   DOI
26 Paddon CJ, Keasling JD. 2014. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 12: 355-367.   DOI
27 Housley RM, Morris CF, Boyle W, Ring B, Biltz R, Tarpley JE, et al. 1994. Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells throughout the rat gastrointestinal tract. J. Clin. Invest. 94: 1764-1777.   DOI
28 Abil Z, Xiong X, Zhao H. 2015. Synthetic biology for therapeutic applications. Mol. Pharm. 12: 322-331.   DOI
29 Lee SK, Chou H, Ham TS, Lee TS, Keasling JD. 2008. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 19: 556-563.   DOI
30 Kim SY, Song MK, Jeon JH, Ahn JH. 2018. Current status of microbial phenylethanoid biosynthesis. J. Microbiol. Biotechnol. 28: 1225-1232.   DOI
31 Ruder WC, Lu T, Collins JJ. 2011. Synthetic biology moving into the clinic. Science 333: 1248-1252.   DOI
32 Folcher M, Fussenegger M. 2012. Synthetic biology advancing clinical applications. Curr. Opin. Chem. Biol. 16: 345-354.   DOI
33 Chen YY, Smolke CD. 2011. From DNA to targeted therapeutics: bringing synthetic biology to the clinic. Sci. Transl. Med. 3(106): 106ps42   DOI
34 Pedrolli DB, Ribeiro NV, Squizato PN, de Jesus VN, Cozetto DA, Team AQAUai. 2019. Engineering microbial living therapeutics: the synthetic biology toolbox. Trends Biotechnol. 37: 100-115.   DOI
35 Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL. 2004. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118: 69-82.   DOI
36 Ozdemir T, Fedorec AJH, Danino T, Barnes CP. 2018. Synthetic biology and engineered live biotherapeutics: toward increasing system complexity. Cell Syst. 7: 5-16.   DOI
37 Sittipo P, Lobionda S, Lee YK, Maynard CL. 2018. Intestinal microbiota and the immune system in metabolic diseases. J. Microbiol. 56: 154-162.   DOI
38 Duan F, March JC. 2010. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc Natl. Acad. Sci. USA 107: 11260-11264.   DOI
39 Hwang IY, Koh E, Wong A, March JC, Bentley WE, Lee YS, et al. 2017. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 8: 15028.   DOI
40 Mays ZJ, Nair NU. 2018. Synthetic biology in probiotic lactic acid bacteria: at the frontier of living therapeutics. Curr. Opin. Biotechnol. 53: 224-231.   DOI
41 Jain A, Bhatia P, Chugh A. 2012. Microbial synthetic biology for human therapeutics. Syst. Synth. Biol. 6: 9-22.   DOI
42 Riglar DT, Silver PA. 2018. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol. 16: 214-225.   DOI
43 Vandenbroucke K, de Haard H, Beirnaert E, Dreier T, Lauwereys M, Huyck L, et al. 2010. Orally administered L. lactis secreting an anti-TNF nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol. 3: 49-56.   DOI
44 Tisch R, Yang XD, Singer SM, Liblau RS, Fugger L, McDevitt HO. 1993. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 366: 72-75.   DOI
45 Saeidi N, Wong CK, Lo TM, Nguyen HX, Ling H, Leong SS, et al. 2011. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol. Syst. Biol. 7: 521.   DOI
46 Nerup J, Mandrup-Poulsen T, Molvig J, Helqvist S, Wogensen L, Egeberg J. 1988. Mechanisms of pancreatic beta-cell destruction in type I diabetes. Diabetes Care. 11 Suppl 1: 16-23.
47 Robert S, Gysemans C, Takiishi T, Korf H, Spagnuolo I, Sebastiani G, et al. 2014. Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes 63: 2876-2887.   DOI
48 Chakravarti D, Wong WW. 2015. Synthetic biology in cellbased cancer immunotherapy. Trends Biotechnol. 33: 449-461.   DOI
49 Chien T, Doshi A, Danino T. 2017. Advances in bacterial cancer therapies using synthetic biology. Curr. Opin. Syst. Biol. 5: 1-8.   DOI
50 Chen Z, He A, Liu Y, Huang W, Cai Z. 2016. Recent development on synthetic biological devices treating bladder cancer. Synth. Syst. Biotechnol. 1: 216-220.   DOI
51 Bhattarai SR, Yoo SY, Lee SW, Dean D. 2012. Engineered phage-based therapeutic materials inhibit Chlamydia trachomatis intracellular infection. Biomaterials 33: 5166-5174.   DOI
52 Din MO, Danino T, Prindle A, Skalak M, Selimkhanov J, Allen K, et al. 2016. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536: 81-85.   DOI
53 Isabella VM, Ha BN, Castillo MJ, Lubkowicz DJ, Rowe SE, Millet YA, et al. 2018. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36: 857-864.   DOI
54 Wegmann U, Carvalho AL, Stocks M, Carding SR. 2017. Use of genetically modified bacteria for drug delivery in humans: Revisiting the safety aspect. Sci. Rep. 7: 2294.   DOI
55 Slomovic S, Pardee K, Collins JJ. 2015. Synthetic biology devices for in vitro and in vivo diagnostics. Proc. Natl. Acad. Sci. USA 112: 14429-14435.   DOI
56 Courbet A, Renard E, Molina F. 2016. Bringing next-generation diagnostics to the clinic through synthetic biology. EMBO Mol. Med. 8: 987-991.   DOI
57 Kotula JW, Kerns SJ, Shaket LA, Siraj L, Collins JJ, Way JC, et al. 2014. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc. Natl. Acad. Sci. USA 111: 4838-4843.   DOI
58 Gillum MP, Zhang D, Zhang XM, Erion DM, Jamison RA, Choi C, et al. 2008. N-acylphosphatidylethanolamine, a gutderived circulating factor induced by fat ingestion, inhibits food intake. Cell 135: 813-824.   DOI
59 Dosoky NS, Guo L, Chen Z, Feigley AV, Davies SS. 2018. Dietary fatty acids control the species of N-Acylphosphatidylethanolamines synthesized by therapeutically modified bacteria in the intestinal tract. ACS Infect. Dis. 4: 3-13.   DOI
60 Chen Z, Guo L, Zhang Y, Walzem RL, Pendergast JS, Printz RL, et al. 2014. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J. Clin. Invest. 124: 3391-3406.   DOI
61 Hiroshima Y, Zhao M, Maawy A, Zhang Y, Katz MH, Fleming JB, et al. 2014. Efficacy of Salmonella typhimurium A1-R versus chemotherapy on a pancreatic cancer patientderived orthotopic xenograft (PDOX). J. Cell Biochem. 115: 1254-1261.   DOI
62 Pinero-Lambea C, Bodelon G, Fernandez-Perianez R, Cuesta AM, Alvarez-Vallina L, Fernandez LA. 2015. Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synth. Biol. 4: 463-473.   DOI
63 Park SH, Zheng JH, Nguyen VH, Jiang SN, Kim DY, Szardenings M, et al. 2016. RGD Peptide cell-surface display enhances the targeting and therapeutic efficacy of attenuated salmonella-mediated cancer therapy. Theranostics 6: 1672-1682.   DOI
64 Kramer MG, Masner M, Ferreira FA, Hoffman RM. 2018. Bacterial therapy of cancer: promises, limitations, and insights for future directions. Front. Microbiol. 9: 16.   DOI
65 Yamamoto M, Zhao M, Hiroshima Y, Zhang Y, Shurell E, Eilber FC, et al. 2016. Efficacy of tumor-targeting Salmonella A1-R on a melanoma patient-derived orthotopic xenograft (PDOX) nude mouse model. PLoS One. 11: e0160882.   DOI