• Title/Summary/Keyword: Biokinetic Model

Search Result 15, Processing Time 0.025 seconds

Application of the new ICRP iodine biokinetic model for internal dosimetry in case of thyroid blocking

  • Kwon, Tae-Eun;Chung, Yoonsun;Ha, Wi-Ho;Jin, Young Woo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1826-1833
    • /
    • 2020
  • Administration of stable iodine has been considered a best measure to protect the thyroid from internal irradiation by radioiodine intake, and its efficacy on thyroid protection has been quantitatively evaluated in several simulation studies on the basis of simple iodine biokinetic models (i.e., three-compartment model). However, the new iodine biokinetic model adopted by the International Commission on Radiological Protection interprets and expresses the thyroid blocking phenomenon differently. Therefore, in this study, the new model was analyzed in terms of thyroid blocking and implemented to reassess the protective effects and to produce dosimetric data. The biokinetic model calculation was performed using computation modules developed by authors, and the results were compared with those of experimental data and prior simulation studies. The new model predicted protective effects that were generally consistent with those of experimental data, except for those in the range of stable iodine administration -72 h before radioiodine exposure. Additionally, the dosimetric data calculated in this study demonstrates a critical limitation of the three-compartment model in predicting bioassay functions, and indicated that dose assessment 1 d after exposure would result in a similar dose estimate irrespective of the administration time of stable iodine.

A Review of Organ Dose Calculation Methods and Tools for Patients Undergoing Diagnostic Nuclear Medicine Procedures

  • Choonsik Lee
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • Exponential growth has been observed in nuclear medicine procedures worldwide in the past decades. The considerable increase is attributed to the advance of positron emission tomography and single photon emission computed tomography, as well as the introduction of new radiopharmaceuticals. Although nuclear medicine procedures provide undisputable diagnostic and therapeutic benefits to patients, the substantial increase in radiation exposure to nuclear medicine patients raises concerns about potential adverse health effects and calls for the urgent need to monitor exposure levels. In the current article, model-based internal dosimetry methods were reviewed, focusing on Medical Internal Radiation Dose (MIRD) formalism, biokinetic data, human anatomy models (stylized, voxel, and hybrid computational human phantoms), and energy spectrum data of radionuclides. Key results from many articles on nuclear medicine dosimetry and comparisons of dosimetry quantities based on different types of human anatomy models were summarized. Key characteristics of seven model-based dose calculation tools were tabulated and discussed, including dose quantities, computational human phantoms used for dose calculations, decay data for radionuclides, biokinetic data, and user interface. Lastly, future research needs in nuclear medicine dosimetry were discussed. Model-based internal dosimetry methods were reviewed focusing on MIRD formalism, biokinetic data, human anatomy models, and energy spectrum data of radionuclides. Future research should focus on updating biokinetic data, revising energy transfer quantities for alimentary and gastrointestinal tracts, accounting for body size in nuclear medicine dosimetry, and recalculating dose coefficients based on the latest biokinetic and energy transfer data.

Age-Specific Thyroid Internal Dose Estimation for Koreans

  • Kwon, Tae-Eun;Yoon, Seokwon;Ha, Wi-Ho;Chung, Yoonsun;Jin, Young Woo
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.170-177
    • /
    • 2021
  • Background: The International Commission on Radiological Protection is preparing to provide reference dose coefficients for environmental radioiodine intake based on newly developed age-specific biokinetic models. However, the biokinetics of iodine has been reported to be strongly dependent on the dietary intake of stable iodine; for example, the thyroidal uptake of iodine may be substantially lower in iodine-rich regions than in iodine-deficient regions. Therefore, this study attempted to establish a system of age-specific thyroid dose estimation for South Koreans, whose daily iodine intakes are significantly higher than that of the world population. Materials and Methods: Korean age-specific biokinetic parameters and thyroid masses were derived based on the previously developed Korean adult model and the Korean anatomical reference data for adults, respectively. This study complied with the principles used in the development of age-specific biokinetic models for world population and used the ratios of baseline values for each age group relative to the value for adults to derive age-specific values. Results and Discussion: Biokinetic model predictions based on the Korean age-specific parameters showed significant differences in iodine behaviors in the body compared to those predicted using the model for the world population. In particular, the Korean age-specific thyroid dose coefficients for 129I and 131I were considerably lower than those calculated for the world population (25%-76% of the values for the world population). Conclusion: These differences stress the need for Korean-specific internal dose assessments for infants and children, which can be achieved by using the data calculated in this study.

Biokinetics of Protein Degrading Clostridium cadaveris and Clostridium sporogenes in Batch and Continuous Mode of Operations

  • Koo, Taewoan;Jannat, Md Abu Hanifa;Hwang, Seokhwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.533-539
    • /
    • 2020
  • A quantitative real-time polymerase chain reaction (QPCR) was applied to estimate biokinetic coefficients of Clostridium cadaveris and Clostridium sporogenes, which utilize protein as carbon source. Experimental data on changes in peptone concentration and 16S rRNA gene copy numbers of C. cadaveris and C. sporogenes were fitted to model. The fourth-order Runge-Kutta approximation with non-linear least squares analysis was employed to solve the ordinary differential equations to estimate biokinetic coefficients. The maximum specific growth rate (μmax), half-saturation concentration (Ks), growth yield (Y), and decay coefficient (Kd) of C. cadaveris and C.sporogenes were 0.73 ± 0.05 and 1.35 ± 0.32 h-1, 6.07 ± 1.52 and 5.67 ± 1.53 g/l, 2.25 ± 0.75 × 1010 and 7.92 ± 3.71 × 109 copies/g, 0.002 ± 0.003 and 0.002 ± 0.001 h-1, respectively. The theoretical specific growth rate of C. sporogenes always exceeded that of C. cadaveris at peptone concentration higher than 3.62 g/l. When the influent peptone concentration was 5.0 g/l, the concentration of C.cadaveris gradually decreased to the steady value of 2.9 × 1010 copies/ml at 4 h Hydraulic retention time (HRT), which indicates a 67.1% reduction of the initial population, but the wash out occurred at HRTs of 1.9 and 3.2 h. The 16S rRNA gene copy numbers of C. sporogenes gradually decreased to steady values ranging from 1.1 × 1010 to 2.9 × 1010 copies/ml. C. sporogenes species was predicted to wash out at an HRT of 1.6 h.

Interpretation of Uranium Bioassay Results with the ICRP Respiratory Track and Biokinetic Model (ICRP 호흡기 및 생체역동학적 모델을 이용한 우라늄 생물분석 결과의 해석)

  • Kim, H.K.;Lee, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.1
    • /
    • pp.43-50
    • /
    • 2003
  • This study describes a practical method for interpretation of bioassay results of inhaled uranium to assess the committed effective doses both for chronic and acute intake situations. Organs in the body were represented by a series of mathematical compartments for analysis of the behavior of uranium in the body according to the gastrointestinal track model, respiratory track model and biokinetic model recommended by the ICRP. An analytical solutions of the system of balance equations among the compartments were obtained using the Birchall's algorithm, and the urinary excretion function and the lung retention function of uranium were obtained. An initial or total intakes by intake modes were calculated by applying excretion and retention functions to the urinary uranium concentration and the lung burden measured with a lung counter. The dose coefficients given in ICRP 78 are used to estimate the committed effective doses from the calculated intakes.

The Effects of Phenol on Biokinetic Coefficient of Multiple Phenol Derivatives of 2,4-Dichlorophenol and 2,4-Dinitrophenol in Activated Sludge Process (활성슬러지공정에서 페놀이 2,4-디클로로페놀과 2,4-디니트로페놀을 함유한 복합페놀폐수의 미생물분해계수에 미치는 영향)

  • Lim, Gye-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.349-353
    • /
    • 1999
  • A study was carried out to see the effects of phenol on the biological degradation of a wastewater containing 2,4-dichlorophenol and 2,4-dinitrophenol and the biodegradation kinetic coefficients of Eckenfelder's modified model for the activated sludge process. The system containing base mix (BM) which was formulated with essential energy sources and nutrients was run down and washed out when 2,4-dichlorophenol and 2,4-dinitrophenol was introduced into the base mix unit without acclimation to phenol. Whereas for the system acclimated to phenol, the treatment efficiency was 91.9% in terms of $BOD_5$ and treatability for each chemical of phenol, 2,4-dichlorophenol, and 2,4-dinitrophenol was 99.8%, 43.3% and 62.5% based on concentration, respectively. Additional BM was added into the combined unit containing phenol, 2,4-dichlorophenol, 2,4-dinitrophenol so that the better treatment efficiency was achieved for each compound. The biokinetic coefficient of Eckenfelder's modified model without phenol acclimation was not estimated because the system did not reach the steady state. Thc coefficient for the phenol acclimation was 12.44 /day, however it was changed as 46.91 /day in addition of both of phenol acclimation and 47 mg/l of BM. The results presented above could be useful for the process design and further study in the field of biodegradation of benzene derivatives.

  • PDF

The BIDAS Program : Bioassay Data Analysis Software for Evaluating Radionuclide Intake and Dose (BIDAS프로그램 : 방사성 핵종의 섭취량과 선량 평가용 생물학적분석 자료 해석 소프트웨어 프로그램)

  • Tae-Yong Lee;Jong-Kyung Kim;Jong-Il Lee;Si-Young Chang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.2
    • /
    • pp.113-124
    • /
    • 2004
  • A computer software program, called BIDAS (BIoassay Data Analysis Software) is developed to interpret the bioassay measurement data in terms of intakes and the committed effective dose using the human respiratory tract model (HRTM), gastrointestinal tract (GI-tract) model and biokinetic models currently recommended by the International Commission on Radiological Protection (ICRP) to describe the behavior of the radioactive materials within the body. The program consists of three modules; first, a database module to manage the bioassay data, second, another databasee module to store the predicted bioassay quantities of each radionuclide and finally, a computational module to estimate the intake and committed effective dose calculated with the bioassay quantity measurement values from either an acute or chronic exposure of the radionuclies within the body. This paper describes the features of the program as well as the quality assurance check results of the BIDAS software program.

  • PDF

Application of ASM and PHOENICS for Optimal Operation of Wastewater Treatment Plant (하수처리장 운영의 최적화를 위한 ASM, PHOENICS의 적용)

  • Kim, Joon Hyun;Han, Mi-Duck;Han, Yung Han
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.73-82
    • /
    • 2000
  • This study was implemented to find an optimal model for wastewater treatment processes using PHOENICS(Parabolic, hyperbolic or Elliptic Numerical Integration Code Series) and ASM(Activated Sludge Model). PHOENICS is a general software based upon the laws of physics and chemistry which govern the motion of fluids, the stresses and strains in solids, heat flow, diffusion, and chemical reaction. The wastewater flow and removal efficiency of particle in two phase system of a grit chamber in wastewater treatment plant were analyzed to inquire the predictive aspect of the operational model. ASM was developed for a biokinetic model based upon material balance in complex activated sludge systems, which can demonstrate dynamic and spatial behavior of biological treatment system. This model was applied to aeration tank and settling chamber in Choonchun city, and the modeling result shows dynamic transport in aeration tank. PHOENCS and ASM could be contributed for the optimal operation of wastewater treatment plant.

  • PDF

Biodynamic understanding of mercury accumulation in marine and freshwater fish

  • Wang, Wen-Xiong
    • Advances in environmental research
    • /
    • v.1 no.1
    • /
    • pp.15-35
    • /
    • 2012
  • Mercury (Hg) is a global environmental pollutant that has been the cause of many public concerns. One particular concern about Hg in aquatic systems is its trophic transfer and biomagnification in food chains. For example, the Hg concentration increases with the increase of food chain level. Fish at the top of food chain can accumulate high concentrations of Hg (especially the toxic form, methylmercury, MeHg), which is then transferred to humans through seafood consumption. Various biological and physiochemical conditions can significantly affect the bioaccumulation of Hg-including both its inorganic (Hg(II)) and organic (MeHg) forms-in fish. There have been numerous measurements of Hg concentrations in marine and freshwater fish worldwide. Many of these studies have attempted to identify the processes leading to variations of Hg concentrations in fish species from different habitats. The development of a biokinetic model over the past decade has helped improve our understanding of the mechanisms underlying the bioaccumulation processes of Hg in aquatic animals. In this review, I will discuss how the biokinetic modeling approach can be used to reveal the interesting biodynamics of Hg in fish, such as the trophic transfer and exposure route of Hg(II) and MeHg, as well as growth enrichment (the increases in Hg concentration with fish size) and biomass dilution (the decreases in Hg concentration with increasing phytoplankton biomass). I will also discuss the relevance of studying the subcellular fates of Hg to predict the Hg bioaccessibility and detoxification in fish. Future challenges will be to understand the inter- and intra-species differences in Hg accumulation and the management/mitigation of Hg pollution in both marine and freshwater fish based on our knowledge of Hg biodynamics.

Characteristics of Microalgal Growth on Anaerobic Effluent of Animal Waste (축산분뇨 혐기성 처리수에서 미세조류의 성장특성)

  • Lim, Byung-Ran;Lee, Kisay;Noh, Seung You;Park, Ki Young
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.306-310
    • /
    • 2008
  • Characteristics of microalgal growth was investigated using anaerobic effluent from two-phase animal waste digestor as substrate. Batch experiments were carried out to investigate the effect of the initial nitrogen and phosphorus concentrations on growth of Microcystis aeruginosa, Chlorella sp. and Euglena gracilis. In 400 times diluted anaerobic effluent (TN 3 mg/L), single cell growth of the Euglena gracilis population increased twice without delay, although Chlorella sp. and Microcystis aerugenos take over 144 hours. Similar appearance with single cell growth was observed in mixed cultures. However, microalgae population did not increase under condition of 10 times diluted influent (TP 3 mg/L) in both pure and mixed cultures, which was affected by high organic and nitrogen concentration. Logistic growth model successfully fitted to determine biokinetic parameters such as ${\lambda}$: lag time, ${\mu}m$: maximal specific growth rate, A: asymptote of growth.