• Title/Summary/Keyword: Bioinformatics data

Search Result 646, Processing Time 0.024 seconds

Paternity Diagnosis using The Multiplex PCR with Microsatellite Markers in Dogs

  • Kim, Seung-Chang;Jang, Hong-Chul;Kim, Lee-Kyung;Lim, Da-Jeong;Lee, Seung-Hwan;Cho, Yong-Min;Kim, Tae-Hun;Seong, Hwan-Hoo;Oh, Sung-Jong;Choi, Bong-Hwan
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.399-405
    • /
    • 2011
  • The number of abandoned dogs is increasing with the worsening of the economy and the rising of feed value. It was becoming a serious social problem because of the disease transmission and destruction of natural ecosystems by abandoned dogs been wild animal. In order to solve these problems, companion dogs necessary to secure its own genetic information and to establish the systematic tracking system. Using multiplex-PCR method with 27 microsatellite marker (MS marker) divided 3 set, various alleles occurring to 6 dog breed (Labrador Retriever, German Shepherd, English Springer Spaniel, Belgian Malinois, Jindo Dog, PoongSan Dog) make use of markers to determine allele frequency and heterozygosity. MS marker FH2834 and FH2790 have only two allele and most were found in 13 alleles at FH3381 and FH3399. Average heterozygosity of MS marker is 0.534 and especially, heterozygosity represented the highest value of 0.765 at FH3381. So, it was recognized appropriate allele frequency for individual identification and paternity diagnosis in companion dogs. Using multiplex-PCR method with MS marker, various alleles occurring to dog breed make use of markers to deter mine individual identification and paternity diagnosis, traits associated biomarkers and breed-specific marker for faster, more accurate and ways to reduce the analysis cost. Based on this result, a scientific basis was established to the existing pedigree data by applying genetics additionally. Animal registration system is expected to be conducted nationwide in future. The method expects to very useful this system.

CANCER CLASSIFICATION AND PREDICTION USING MULTIVARIATE ANALYSIS

  • Shon, Ho-Sun;Lee, Heon-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.706-709
    • /
    • 2006
  • Cancer is one of the major causes of death; however, the survival rate can be increased if discovered at an early stage for timely treatment. According to the statistics of the World Health Organization of 2002, breast cancer was the most prevalent cancer for all cancers occurring in women worldwide, and it account for 16.8% of entire cancers inflicting Korean women today. In order to classify the type of breast cancer whether it is benign or malignant, this study was conducted with the use of the discriminant analysis and the decision tree of data mining with the breast cancer data disclosed on the web. The discriminant analysis is a statistical method to seek certain discriminant criteria and discriminant function to separate the population groups on the basis of observation values obtained from two or more population groups, and use the values obtained to allow the existing observation value to the population group thereto. The decision tree analyzes the record of data collected in the part to show it with the pattern existing in between them, namely, the combination of attribute for the characteristics of each class and make the classification model tree. Through this type of analysis, it may obtain the systematic information on the factors that cause the breast cancer in advance and prevent the risk of recurrence after the surgery.

  • PDF

A DNA Microarray LIMS System for Integral Genomic Analysis of Multi-Platform Microarrays

  • Cho, Mi-Kyung;Kang, Jason Jong-ho;Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • v.5 no.2
    • /
    • pp.83-87
    • /
    • 2007
  • The analysis of DNA microarray data is a rapidly evolving area of bioinformatics, and various types of microarray are emerging as some of the most exciting technologies for use in biological and clinical research. In recent years, microarray technology has been utilized in various applications such as the profiling of mRNAs, assessment of DNA copy number, genotyping, and detection of methylated sequences. However, the analysis of these heterogeneous microarray platform experiments does not need to be performed separately. Rather, these platforms can be co-analyzed in combination, for cross-validation. There are a number of separate laboratory information management systems (LIMS) that individually address some of the needs for each platform. However, to our knowledge there are no unified LIMS systems capable of organizing all of the information regarding multi-platform microarray experiments, while additionally integrating this information with tools to perform the analysis. In order to address these requirements, we developed a web-based LIMS system that provides an integrated framework for storing and analyzing microarray information generated by the various platforms. This system enables an easy integration of modules that transform, analyze and/or visualize multi-platform microarray data.

Biological Data Analysis using DDBJ Web services

  • Sugawara, Hideaki;Miyazaki, Satorn;Abe, Takashi;Shigemoto, Yasumasa
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.379-382
    • /
    • 2005
  • We demonstrate workflows in biological data retrieval and analysis using the DDBJ Web Service; specifically introduce a workflow for the analysis of proteins or proteomics data sets. The workflow mechanically extracts the gene whose protein structure and function are known from all the genes of a human genome in Ensembl (http://www.ensembl.org/) based on cross-references among Ensembl, Swiss-Prot (http://www.ebi.ac.uk/swissprot) and PDB (Protein Data Bank; http://www.wwpdb.org/). The workflow discovered ‘hidden’ linkages among databases. We will be able to integrate distributed and heterogeneous data systems into workflows, if they are provided based on standards for Web services.

  • PDF

Automated Classification of PubMed Texts for Disambiguated Annotation Using Text and Data Mining

  • Choi, Yun-Jeong;Park, Seung-Soo
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.101-106
    • /
    • 2005
  • Recently, as the size of genetic knowledge grows faster, automated analysis and systemization into high-throughput database has become hot issue. One essential task is to recognize and identify genomic entities and discover their relations. However, ambiguity of name entities is a serious problem because of their multiplicity of meanings and types. So far, many effective techniques have been proposed to analyze documents. Yet, accuracy is high when the data fits the model well. The purpose of this paper is to design and implement a document classification system for identifying entity problems using text/data mining combination, supplemented by rich data mining algorithms to enhance its performance. we propose RTP ost system of different style from any traditional method, which takes fault tolerant system approach and data mining strategy. This feedback cycle can enhance the performance of the text mining in terms of accuracy. We experimented our system for classifying RB-related documents on PubMed abstracts to verify the feasibility.

  • PDF

Application of genotyping-by-sequencing (GBS) in plant genome using bioinformatics pipeline

  • Lee, Yun Gyeong;Kang, Chon-Sik;Kim, Changsoo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.58-58
    • /
    • 2017
  • The advent of next generation sequencing technology has elicited plenty of sequencing data available in agriculturally relevant plant species. For most crop species, it is too expensive to obtain the whole genome sequence data with sufficient coverage. Thus, many approaches have been developed to bring down the cost of NGS. Genotyping-by-sequencing (GBS) is a cost-effective genotyping method for complex genetic populations. GBS can be used for the analysis of genomic selection (GS), genome-wide association study (GWAS) and constructing haplotype and genetic linkage maps in a variety of plant species. For efficiently dealing with plant GBS data, the TASSEL-GBS pipeline is one of the most popular choices for many researchers. TASSEL-GBS is JAVA based a software package to obtain genotyping data from raw GBS sequences. Here, we describe application of GBS and bioinformatics pipeline of TASSEL-GBS for analyzing plant genetics data.

  • PDF

Effect of Normalization on Detection of Differentially-Expressed Genes with Moderate Effects

  • Cho, Seo-Ae;Lee, Eun-Jee;Kim, Young-Chul;Park, Tae-Sung
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.118-123
    • /
    • 2007
  • The current existing literature offers little guidance on how to decide which method to use to analyze one-channel microarray measurements when dealing with large, grouped samples. Most previous methods have focused on two-channel data;therefore they can not be easily applied to one-channel microarray data. Thus, a more reliable method is required to determine an appropriate combination of individual basic processing steps for a given dataset in order to improve the validity of one-channel expression data analysis. We address key issues in evaluating the effectiveness of basic statistical processing steps of microarray data that can affect the final outcome of gene expression analysis without focusingon the intrinsic data underlying biological interpretation.

Development of Information Biology (I)

  • Tateno, Yoshio
    • Interdisciplinary Bio Central
    • /
    • v.5 no.1
    • /
    • pp.2.1-2.3
    • /
    • 2013
  • Birth and development of information biology are introduced with its definition and scientific basis. The discipline lives on the two types of nutrition, one is a huge amount of biological data on genomes, gene expressions, proteomes, protein 3D structures, protein networks, and so forth. The other is the method of using them on a computer. The scientific basis of the two is evolution. To collect genome and gene expression data form laboratories in the world, annotate and dissimilate back to researchers worldwide, they built the EMBL database in Europe in 1982, GenBank in USA in 1984 and DNA Data Bank of Japan in 1987. On the other hand, the methods of using and analyzing those data have accordingly been developed. The two aspects advance the discipline further and further.

QSPR model for the boiling point of diverse organic compounds with applicability domain (다양한 유기화합물의 비등점 예측을 위한 QSPR 모델 및 이의 적용구역)

  • Shin, Seong Eun;Cha, Ji Young;Kim, Kwang-Yon;No, Kyoung Tai
    • Analytical Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.270-277
    • /
    • 2015
  • Boiling point (BP) is one of the most fundamental physicochemical properties of organic compounds to characterize and identify the thermal characteristics of target compounds. Previously developed QSPR equations, however, still had some limitation for the specific compounds, like high-energy molecules, mainly because of the lack of experimental data and less coverage. A large BP dataset of 5,923 solid organic compounds was finally secured in this study, after dedicated pre-filtration of experimental data from different sources, mostly consisting of compounds not only from common organic molecules but also from some specially used molecules, and those dataset was used to build the new BP prediction model. Various machine learning methods were performed for newly collected data based on meaningful 2D descriptor set. Results of combined check showed acceptable validity and robustness of our models, and consensus approaches of each model were also performed. Applicability domain of BP prediction model was shown based on descriptor of training set.

Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach

  • Buddham, Richa;Chauhan, Sweety;Narad, Priyanka;Mathur, Puniti
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.365-377
    • /
    • 2022
  • Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.