• Title/Summary/Keyword: Biogas production

Search Result 273, Processing Time 0.034 seconds

Biogas Production and Utilization Technologies from Organic waste (유기성폐기물을 이용한 바이오가스 생산 및 활용기술)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.202-205
    • /
    • 2008
  • Anaerobic digestion(AD) is the most promising method of treating and recycling of different organic wastes, such as OFMSW, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. degradation in the absence of oxygen, organic material is decomposed by anaerobes forming degestates such as an excellent fertilizer and biogas, a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to producing renewable energy and to reducing $CO_2$ and other GHG emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. A classification of the basic AD technologies for the production of biogas can be made according to the dry matter of biowaste and digestion temperature, which divide the AD process in wet and dry, mesophilic and thermophilic. The biogas produced from AD plant can be utilized as an alternative energy source, for lighting and cooking in case of small-scale, for CHP and vehicle fuel or fuel in industrials in case of large-scale. This paper provides an overview of the status of biogas production and utilization technologies.

  • PDF

The effect of biogas slurry application on biomass production and the silage quality of corn

  • Hua Sun;Kai Shi;Hairong Ding;Chenglong Ding;Zhiqing Yang;Chen An;Chongfu Jin;Beiyi Liu;Zhaoxin Zhong;Xia Xiao;Fuyin Hou
    • Animal Bioscience
    • /
    • v.36 no.12
    • /
    • pp.1918-1925
    • /
    • 2023
  • Objective: The objective of this study was to evaluate the effect of biogas slurry application on biomass production and the silage quality of corn. Methods: A field experiment was conducted in which corn was grown using different biogas slurry application rates. The effect of 25% to 500% biogas slurry nitrogen replacement (T1 to T14) on the yield and quality indices of corn were studied by field plot experiments. Results: The results revealed that biogas slurry application improved the stem diameter and relative feed value of corn silage in treatments T13 and T11. Moreover, the fermentation quality of corn silage was improved due to an increase in lactic acid content; in comparison with the chemical synthetic fertilizer (CF) group. The crude protein contents of corn silage had no obvious change with increasing biogas slurry application. However, the forage quality index of acid detergent fiber was decreased (p<0.05) in the T11 group compared with the CF group. In addition, higher (p<0.05) 30 h in vitro dry matter digestibility and 30 h in vitro neutral detergent fiber digestibility were observed in the T11 and T13 groups than in the CF group. Conclusion: Based on these results, it was concluded that the optimum biogas slurry application rate for corn was approximately 350% to 450% biogas slurry nitrogen replacement under the present experimental conditions.

Two-stage anaerobic biogas plant using piggery wastewater (축산분뇨를 이용한 바이오가스 플랜트)

  • Park, Hyung-Wan;Lee, Hyun-Sang;Park, Kyung-Ho;Kim, Keum-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.251-255
    • /
    • 2008
  • Biogas plant was started in 2007 for the purpose of treatment of $20m^3$/d of wastewater from piggery farm, biogas-production and electricity generation during treatment of the wastewater. The biogas plant is consists of two anaerobic digesters, gas holder and 60 kWe generator. $62,287m^3$ of biogas was produced and 74,745kWh electricity was generated by using the biogas after commencing the biogas plant.

  • PDF

Study on Potential Feasibility of Biomethane as a Transport Fuel in Korea (수송용 대체연료로서 바이오메탄의 잠재적 타당성 연구)

  • Kim, Jae-Kon;Lee, Don-Min;Park, Chun-Kyu;Yim, Eui-Soon;Jung, Choong-Sub;Kim, Ki-Dong;Oh, Young-Sam
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.17-28
    • /
    • 2011
  • Biogas production and utilization are an emerging alternative energy technology. Biogas is produced from the biological breakdown of organic matter through anaerobic digestion. Biogas can be utilized for various energy sectors such as space heating, electricity generation and vehicle fuel. Especially, to be utilized as vehicle fuel, raw biogas needs to be upgraded that is mainly the removal of carbon dioxide to increase the methane content up to more than 95 ~ 97 vol% in some cases, similar to the composition of fossil-based natural gas. Usage of Biogas as a fuel of vehicles have an effect of reducing $CO_2$ emission compared to fossil fuels. Biomethane which is produced by upgrading of biogas is regarded as a good alternative energy and usage of clean energy is encouraged to deal with air pollution and waste management as well as production of clean energy. Recently, biogas projects for vehicle fuel are newly being launched and Korea government have also announced a plan for investment to develop biogas as a transport fuel. In this study, it is aimed to examine the potential feasibility of biomethane as a transport fuel. As a results, the status of biomethane, quality standard, quality characteristics, and upgrading technology of biogas were investigated to evaluate of biogas as a vehicle fuel of transportation.

Kinetic Study of the Anaerobic Digestion of Swine Manure at Mesophilic Temperature: A Lab Scale Batch Operation

  • Kafle, Gopi Krishna;Kim, Sang-Hun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.233-244
    • /
    • 2012
  • Purpose: The kinetic evaluation was performed for swine manure (SM) degradation and biogas generation. Methods: The SM was anaerobically digested using batch digesters at feed to inoculum ratio (F/I) of 1.0 under mesophilic conditions ($36.5^{\circ}C$). The specific gas yield was expressed in terms of gram total chemical oxygen demand (mL/g TCOD added) and gram volatile solids added (mL/g VS added) and their effectiveness was discussed. The biogas and methane production were predicted using first order kinetic model and the modified Gompertz model. The critical hydraulic retention time for biomass washout was determined using Chen and Hashimoto model. Results: The biogas and methane yield from SM was 346 and 274 mL/ TCOD added, respectively after 100 days of digestion. The average methane content in the biogas produced from SM was 79% and $H_2S$ concentration was in the range of 3000-4108 ppm. It took around 32-47 days for 80-90% of biogas recovery and the TCOD removal from SM was calculated to be 85%. When the specific biogas and methane yield from SM (with very high TVFA concentration) was expressed in terms of oven dried volatile solids (VS) basis, the gas yield was found to be over estimated. The difference in the measured and predicted gas yield was in the range of 1.2-1.5% when using first order kinetic model and 0.1% when using modified Gompertz model. The effective time for biogas production ($T_{Ef}$) from SM was calculated to be in the range of 30-45 days and the critical hydraulic retention time ($HRT_{Critical}$) for biomass wash out was found to be 9.5 days. Conclusions: The modified Gompertz model could be better in predicting biogas and methane production from SM. The HRT greater than 10 days is recommended for continuous digesters using SM as feedstock.

Dunaliella salina as a Microalgal Biomass for Biogas Production (바이오 가스 생산을 위한 미세조류 바이오매스로서의 Dunaliella salina)

  • Jeon, Nayeong;Kim, Daehee;An, Junyeong;Kim, Taeyoung;Gim, Geun Ho;Kang, Chang Min;Kim, Duk Jin;Kim, Si Wouk;Chang, In Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.282-285
    • /
    • 2012
  • In this study, the ability of Chlorella vulgaris and Dunaliella salina to use biomass resources for anaerobic digestive biogas production was examined. The differences in cell wall structure pretreatments affecting the yield of soluble products showed that D. salina is a better candidate for biogas production than C. vulgaris. There was no significant difference between pretreated and non-pretreated D. salina in terms of methane production yield by inocula obtained from anaerobic digestion systems. Therefore, D. salina is a suitable algal biomass for biogas production due to its high biomass productivity, simple pretreatment needs, and easy conversion to biogas.

Activation method for biogas production from organic waste (긴급제언: 유기성폐기물 자원(바이오가스 생산) 활성화 방안)

  • Kwak, Che-Sik
    • Journal of the Korean Professional Engineers Association
    • /
    • v.43 no.5
    • /
    • pp.35-40
    • /
    • 2010
  • The world economy is threatened by rising oil prices due to the depletion of resources, and climatic changes are intensified due to rapid increase of greenhouse gases emission. Global warming is recognized as a worldwide problem not only as national level one, collaborative efforts are in progress actively. The fact is that the development of new & renewable energy which can replace fossil fuel and preserve the environment is the key of the attention in accordance with "low carbon, green growth" policy of our government. Biogas is an energy source. And the best part of using biogas is that wastes are treated in its production process.

  • PDF

Life Cycle Assessment of Biogas Production in Small-scale Household Digesters in Vietnam

  • Vu, T.K.V.;Vu, D.Q.;Jensen, L.S.;Sommer, S.G.;Bruun, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.716-729
    • /
    • 2015
  • Small-scale household digesters have been promoted across Asia as a sustainable way of handling manure. The major advantages are that they produce biogas and reduce odor. However their disadvantages include the low recycling of nutrients, because digestate is dilute and therefore difficult to transport, and the loss of biogas as a result of cracks and the intentional release of excess biogas. In this study, life cycle assessment (LCA) methodology was used to assess the environmental impacts associated with biogas digesters in Vietnam. Handling 1,000 kg of liquid manure and 100 kg of solid manure in a system with a biogas digester reduced the impact potential from 4.4 kg carbon dioxide ($CO_2$) equivalents to 3.2 kg $CO_2$ equivalents compared with traditional manure management. However, this advantage could easily be compromised if digester construction is considered in the LCA or in situations where there is an excess of biogas which is intentionally released. A sensitivity analysis showed that biogas digesters could be a means of reducing global warming if methane emissions can be kept low. In terms of eutrophication, farms with biogas digesters had 3 to 4 times greater impacts. In order to make biogas digesters sustainable, methods for recycling digestates are urgently required.

A Feasibility Study on Biogas Production from Anaerobic Digestion of Straw (볏짚의 혐기성소화시 소화가스 생성에 관한 연구)

  • Park, Jong-An;Hur, Joon-Moo
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.29-35
    • /
    • 1999
  • Quantity and composition of biogas from semi-continuous anaerobic digestion of straw were obtained experimentally in laboratory scale digesters fed with 1 liter of 5% straw-water mixture and maintained at 35$^{\circ}C$. Experiments were carried out for hydraulic retention time(HRT) of 8, 10 and 15days, respectively. The amount and composition of biogas produced were measured until steady-state was achieved for each run. The amount of biogas and methane percent go through a maximum and decrease continuously towards the steady-state after three times operation of hydraulic retention time(HRT). Methane gas production rates at steady-state increase with the increasing of HRT. Biogas production of 0.45 liter/day with 25% methane, 0.42 liter/day with 33.7% methane and 0.492 liter/day with 31.7% methane were obtained for 8, 10 and 15days of HRT, respectively. The high proportion of soluble carbohydrates present in straw makes the volatile fatty acids to build up within the digester causing a drop in pH that inhibits digestion. Regular control of pH is therefore necessary by adding alkalinity. Reductions in COD increase with increase in HRT. The stratification of plant material within the digester is different from that of manure, and modifications in design and operation of digesters may be necessary if they are fed with plant matter.

  • PDF

Anaerobic digestion and agricultural application of organic wastes

  • Suanu, Leh-Togi Zobeashia S.;Abiodun, Aransiola S.;Josiah, Ijah U.J.;Peter, Abioye O.
    • Advances in environmental research
    • /
    • v.7 no.2
    • /
    • pp.73-85
    • /
    • 2018
  • The anaerobically digestion and agricultural application of organic wastes was conducted using food wastes and cow dung. Twenty kilograms each of the feed stocks was added into two 30 liters-capacity batch digesters. The anaerobic digestion was carried out within a temperature range of $25-31^{\circ}C$ for a retention time of 51 days. The results showed a cumulative gas yield of 5.0 bars for food waste and no gas production for cow dung within the retention time. Bacteria such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris and Clostridium sp were isolated. Fungi isolated included Aspergillus niger, Aspergillus nidulan, Trichophyton rubrum and Epidermophyton flocossum. The non-dispersive infrared (NDIR) analysis of the biogas produced confirmed that the gas consisted of $CH_4$, $CO_2$ and $H_2$. Statistical analysis revealed there was no significant correlation between temperature and biogas produced from the organic wastes (r= 0.177, p = 0.483).The organic wastes from the biogas production process stimulated maize growth when compared to control (soil without organic waste) and indicated maximum height. The study therefore reveals that food waste as potential substrates for biogas production has a moderate bio-fertilizer potential for improving plant growth and yield when added to soil.