Browse > Article
http://dx.doi.org/10.5713/ajas.14.0683

Life Cycle Assessment of Biogas Production in Small-scale Household Digesters in Vietnam  

Vu, T.K.V. (National Institute of Animal Sciences)
Vu, D.Q. (Vietnamese Academy of Agricultural Sciences)
Jensen, L.S. (Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen)
Sommer, S.G. (Department of Chemical Engineering, Biotechnology and Environmental Technology, Faculty of Engineering, University of Southern Denmark)
Bruun, S. (Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.5, 2015 , pp. 716-729 More about this Journal
Abstract
Small-scale household digesters have been promoted across Asia as a sustainable way of handling manure. The major advantages are that they produce biogas and reduce odor. However their disadvantages include the low recycling of nutrients, because digestate is dilute and therefore difficult to transport, and the loss of biogas as a result of cracks and the intentional release of excess biogas. In this study, life cycle assessment (LCA) methodology was used to assess the environmental impacts associated with biogas digesters in Vietnam. Handling 1,000 kg of liquid manure and 100 kg of solid manure in a system with a biogas digester reduced the impact potential from 4.4 kg carbon dioxide ($CO_2$) equivalents to 3.2 kg $CO_2$ equivalents compared with traditional manure management. However, this advantage could easily be compromised if digester construction is considered in the LCA or in situations where there is an excess of biogas which is intentionally released. A sensitivity analysis showed that biogas digesters could be a means of reducing global warming if methane emissions can be kept low. In terms of eutrophication, farms with biogas digesters had 3 to 4 times greater impacts. In order to make biogas digesters sustainable, methods for recycling digestates are urgently required.
Keywords
Manure; Digestate; Methane; Global Warming; Euthrophication;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bruun, S., L. S. Jensen, V. T. Khanh Vu, and S. G. Sommer. 2014. Small-scale household biogas digesters: An option for global warming mitigation or a potential climate bomb? Renew. Sustain. Energy Rev. 33:736-41.   DOI   ScienceOn
2 Chantigny, M. H., D. A. Angers, P. Rochette, G. Belanger, D. Masse, and D. Cote. 2007. Gaseous nitrogen emissions and forage nitrogen uptake on soils fertilized with raw and treated swine manure. J. Environ. Qual. 36:1864-72.   DOI   ScienceOn
3 Chen, S., B. Chen, and D. Song. 2012. Life-cycle energy production and emissions mitigation by comprehensive biogas-digestate utilization. Bioresour. Technol. 114:357-364.   DOI   ScienceOn
4 Cooper, P. 1999. A review of the design and performance of vertical-flow and hybrid reed bed treatment systems. Water Sci. Technol. 40:1-9.
5 Costales, A., P. Gerber, and H. Steinfeld. 2006. Underneath the livestock revolution. Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome, Italy.
6 De Vries, J. W., T. M. W. J. Vinken, L. Hamelin, and I. J. M. de Boer. 2012. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy-A life cycle perspective. Bioresour. Technol. 125:239-248.   DOI   ScienceOn
7 Delin, S., B. Stenberg, A. Nyberg, and L. Brohede. 2012. Potential methods for estimating nitrogen fertilizer value of organic residues. Soil Use Manag. 28:283-291.   DOI   ScienceOn
8 Department of Livestock Production. 2010. Vietnam part of annual report of the Asia biogas program. Ministry of Agriculture and Rural Development, Hanoi, Vietnam.
9 Department of Livestock Production. 2013. Commercial feed production in Vietnam. Ministry of Agriculture and Rural Development, Hanoi, Vietnam.
10 Dhingra, R., E. R. Christensen, Y. Liu, B. Zhong, C. F. Wu, M. G. Yost, and J. V. Remais. 2011. Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China. Environ. Sci. Technol. 45:2345-2352.   DOI   ScienceOn
11 Flesch, T. K., R. L. Desjardins, and D. Worth. 2011. Fugitive methane emissions from an agricultural biodigester. Biomass Bioenerg. 35:3927-3935.   DOI   ScienceOn
12 Eastern Research Group. 2010. PA Consulting Group, and International Institute for Energy Conservation, Resource assessment report for livestock and agro-industrial wastes - Vietnam. Methane to Markets Partnership, Hanoi, Vietnam.
13 Eggleston, S., L. Buendia, K. Miwa, T. Ngara, and K. Tanabe. 2006. IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies. Hayama, Japan.
14 European Commission. 2010. Joint Research Centre - Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD) Handbook-General guide for Life Cycle Assessment-Detailed guidance. 1st edn, March 2010. EUR 24708 EN. Luxembourg. Publications Office of the European Union.
15 Goedkoop, M., R. Heijungs, M. Huijbregts, A. De Schryver, J. Struijs, and R. van Zelm. 2009. ReCiPe 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Environmental Agency, Amersfoort, the Netherlands.
16 Hamelin, L., M. Wesnes, H. Wenzel, and B. M. Petersen. 2011. Environmental consequences of future biogas technologies based on separated slurry. Environ. Sci. Technol. 45:5869-5877.   DOI   ScienceOn
17 Hjorth, M., K. V. Christensen, M. L. Christensen, and S. G. Sommer. 2010. Solid liquid separation of animal slurry in theory and practice. A review. Agron. Sustain. Dev. 30:153-180.   DOI   ScienceOn
18 Huang, S., Y. Ma, D. Bao, D. Guo, and S. Zhang. 2011. Manures behave similar to superphosphate in phosphorus accumulation in long-term field soils. Int. J. Plant Prod. 5:135-146.
19 ISO, 2006a. ISO 14044. Environmental management-Life cycle assessment-Requirements and guidelines. International Organisation for Standardisation, Geneva, Switzerland.
20 Huijsmans, J. F. M., J. M. G. Hol, and G. D. Vermeulen. 2003. Effect of application method, manure characteristics, weather and field conditions on ammonia volatilization from manure applied to arable land. Atmos. Environ. 37:3669-3680.   DOI   ScienceOn
21 ISO, 2006b. ISO 14040. Environmental management-Life cycle assessment-Principles and framework. International Organisation for Standardisation, Geneva, Switzerland.
22 Johnston, A. E., P. R. Poulton, and K. Coleman. 2009. Soil organic matter: Its Importance in sustainable agriculture and carbon dioxide fluxes. Adv. Agron. 101:1-57.   DOI
23 Kapdi, S. S., V. K. Vijay, S. K. Rajesh, and R. Prasad. 2005. Biogas scrubbing, compression and storage: Perspective and prospectus in Indian context. Renew. Energy 30:1195-1202.   DOI   ScienceOn
24 Losak, T., A. Zatloukalova, M. Szostkova, J. Hlusek, J. Fryc, and T. Vitez. 2011. Comparison of the effectiveness of digestate and mineral fertilizer on yields and quality of kohlrabi (Brassica Oleraces, L.). Acta Univ. Agric. et Silvic. Mend. Brun. 3:117-122.
25 Mai, V. T., H. van Kaulen, and R. Roetter. 2010. Nitrogen leaching in intensive cropping systems in Tan Duong Dristrict, Red River Delta of Vietnam. Water Air Soil Pollut. 210:15-31.   DOI   ScienceOn
26 Montes, F., C. A. Rotz, and H. Chaoui. 2009. Process modeling of ammonia volatilization from ammonium solution and manure surfaces: a review with recommended models. Trans. ASAE 52:1707-1720.   DOI
27 Poeschl, M., S. Ward, and P. Owende. 2012a. Environmental impacts of biogas deployment - Part I: life cycle inventory for evaluation of production process emissions to air. J. Clean. Prod. 24:168-183.   DOI   ScienceOn
28 Olesen, J. E. and S. G. Sommer. 1993. Modelling effects of wind speed and surface cover on ammonia volatilization from stored pig slurry. Atmos. Environ. 27:2567-2574.   DOI   ScienceOn
29 Park, J. B. K., R. J. Craggs, and A. N. Shilton. 2013. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds. Water Res. 47:4904-4917.   DOI   ScienceOn
30 Pei-dong, Z., J. Guomei, and W. Gang. 2007. Contribution to emission reduction of $CO_{2}$ and $SO_{2}$ by household biogas construction in rural China. Renew. Sustain. Energy Rev. 11:1903-1912.   DOI   ScienceOn
31 Poeschl, M., S. Ward, and P. Owende. 2012b. Environmental impacts of biogas deployment - Part II: life cycle assessment of multiple production and utilization pathways. J. Clean. Prod. 24:184-201.   DOI   ScienceOn
32 Prapaspongsa, T., P. Christensen, J. H. Schmidt, and M. Thrane. 2010. LCA of comprehensive pig manure management incorporating integrated technology systems. J. Clean. Prod. 18:1413-1422.   DOI   ScienceOn
33 Rajendran, K., S. Aslanzadeh, and M. J. Taherzadeh. 2012. Household biogas digesters-A review. Energies 5:2911-2942.   DOI
34 Rehl, T. and J. Muller. 2011. Life cycle assessment of biogas digestate processing technologies. Resour. Conserv. Recycl. 56:92-104.   DOI   ScienceOn
35 Sandars, D. L., E. Audsley, C. Canete, T. R. Cumby, I. M. Scotford, and A. G. Williams. 2003. Environmental benefits of livestock manure management practices and technology by life cycle assessment. Biosyst. Eng. 84:267-281.   DOI   ScienceOn
36 SNV-VN, 2012. Domestic biogas technology training handbook. Biogas program for animal husbandry sector in Vietnam. Program supported by Netherlands Development Organisation. http://biogas.org.vn/english/An-pham.aspx Accessed 03 August, 2013.
37 Schroder, J. J., D. Uenk, and G. J. Hilhorst. 2007. Long-term nitrogen fertilizer replacement value of cattle manures applied to cut grassland. Plant Soil 299:83-99.   DOI
38 Schulte, E. E. and B. G. Hopkins. 1996. Estimation of organic matter by weight loss-onignition. In: Soil Organic Matter: Analysis and Interpretation (Eds. F. R. Magdoff, M. A. Tabatabai, and E. A. Hanlon). SSSA Special Publication 46. Madison, WI, USA. pp. 21-31.
39 Smith, K. R., R. Uma, V. V. N. Kishore, K. L .V. Joshi, J. Zhang, R. A. Rasmussen, and M. A. K. Khalil. 2000. Greenhouse gases from small-scale combustion devices in developing countries, Phase IIa. Household stoves in India. United States Environmental Protection Agency. Washington, DC, USA. pp. 1-89.
40 Sogaard, H. T., S. G. Sommer, N. J. Hutchings, J. F. M. Huijsmans, D. W. Bussink, and F. Nicholson. 2002. Ammonia volatilization from field-applied animal slurry-the ALFAM model. Atmos. Environ. 36:3309-3319.   DOI   ScienceOn
41 Sommer, S. G. and N. J. Hutchings. 2001. Ammonia emission from field applied manure and its reduction-invited paper. Eur. J. Agron. 15:1-15.   DOI   ScienceOn
42 Sommer, S. G., J. K. Schjoerring, and O. T. Denmead. 2004. Ammonia emission from mineral fertilizers and fertilized crops. Adv. Agron. 82:557-622.   DOI
43 Sommer, S. G., R. R. Sherlock, and R. Z. Khan. 1996. Nitrous oxide and methane emissions from pig slurry amended soils. Soil Biol. Biochem. 28:1541-1544.   DOI   ScienceOn
44 Thomsen, I. K., J. E. Olesen, H. B. Moller, P. Sorensen, and B. T. Christensen. 2013. Carbon dynamics and retention in soil after anaerobic digestion of dairy cattle feed and faeces. Soil Biol. Biochem. 58:82-87.   DOI   ScienceOn
45 Sommer, S. G., S. O. Petersen, P. Sorensen, H. D. Poulsen, and H. B. Moller. 2007. Methane and carbon dioxide emissions and nitrogen turnover during liquid manure storage. Nutr. Cycl. Agroecosyst. 78:27-36.   DOI
46 ten Hoeve, M., N. J. Hutchings, G. M. Peters, M. Svanstrom, L. S. Jensen, and S. Bruun. 2013. Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark. J. Environ. Manag. 132:60-70.
47 Thien Thu, C. T., P. H. Cuong, L. T. Hang, N. V. Chao, L. X. Anh, N. X. Trach, and S. G. Sommer. 2012. Manure management practices on biogas and non-biogas pig farms in developing countries - using livestock farms in Vietnam as an example. J. Clean. Prod. 27:64-71.   DOI   ScienceOn
48 Tran, M. T., H. H. Bui, J. Luxhoi, and L. S. Jensen. 2012. Application rate and composting method affect the immediate and residual manure fertilizer value in a maize-rice-rice-maize cropping sequence on a degraded soil in northern Vietnam. Soil Sci. Plant Nutr. 58:206-23.   DOI
49 Tran, M. T., T. K. V. Vu, S. G. Sommer, and L. S. Jensen. 2011. Nitrogen turnover and loss during storage of slurry and composting of solid manure under typical Vietnamese farming conditions. J. Agric. Sci. 149:285-296.   DOI   ScienceOn
50 Uggetti, E., I. Ferrer, E. Llorens, and J. Garcia. 2010. Sludge treatment wetlands: A review on the state of the art. Bioresour. Technol. 101:2905-2912.   DOI   ScienceOn
51 UNFCCC/CCNUCC. 2012. Methodological Tool "Project and leakage emissions from anaerobic digesters" (Version 01.0.0). EB 66 Report Annex 32. CDM Executive Board.
52 Vu, T. K. V. and X. T. Dinh. 2012b. Survey on ompact assessment of climate change on livestock production. Ministry of Agriculture and Rural Development, Hanoi, Vietnam.
53 Velthof, G. L., J. A. Nelemans, O. Oenema, and P. J. Kuikman. 2005. Gaseous nitrogen and carbon losses from pig manure derived from different diets. J. Environ. Qual. 34:698-706.   DOI   ScienceOn
54 Vu, D. Q., A. D. Neergaard, D. T. Tran, T. T. H. Hoang, and T. K. V. Vu. 2014. The effect of biochar and different crop residues on greenhouse gas emissions during passive aeration composting of manure and digestate typical of small-scale livestock farms in Vietnam. Environ. Technol. http://dx.doi.org/10.1080/09593330.2014.960475   DOI
55 Vu, Q., T. Tran, P. Nguyen, C. Vu, V. Vu, and L. Jensen. 2012a. Effect of biogas technology on nutrient flows for small- and medium-scale pig farms in Vietnam. Nutr. Cycl. Agroecosyst. 94:1-13.   DOI
56 Vu, T. K. V., C. C. Vu, J. M. Medoc, M. R. Flindt, and S. G. Sommer. 2012c. Management model for assessment of nitrogen flow from feed to pig manure after storage in Vietnam. Environ. Technol. 33:725-731.   DOI
57 Vu, T. K. V., M. T. Tran, and T. T. S. Dang. 2007. A survey of manure management on pig farms in Northern Vietnam. Livest. Sci. 112:288-297.   DOI   ScienceOn
58 Vu, T. K. V., T. Prapaspongsa, H. D. Poulsen, and H. Jorgensen. 2009. Prediction of manure nitrogen and carbon output from grower-finisher pigs. Anim. Feed Sci. Technol. 151:97-110.   DOI   ScienceOn
59 Vu, V. T. K., B. N. Tran, D. Q. Vu, H. C. Pham, C. C. Vu, L. S. Jensen, S. G. Sommer, and P. D. Le. 2012d. Effects of dietary crude protein and crude fiber levels on N and P excretion, hydrogen sulfide, ammonia and greenhouse gases emission from slurry of growing pigs between 30-60 kg. AAAP conference, 2012, Bangkok, Thailand.
60 Wang C. B. and L. X. Zhang. 2012. Life cycle assessment of carbon emission from a household biogas digester: Implications for policy. Procedia Environ. Sci. 13:778-789.   DOI   ScienceOn
61 Watanabe, T., T. T. Son, N. N. Hung, N. Van Truong, T. Q. Giau, K. Hayashi, and O. Ito. 2009. Measurement of ammonia volatilization from flooded paddy fields in Vietnam. Soil Sci. Plant Nutr. 55:793-799.   DOI   ScienceOn
62 Webb, J., S. G. Sommer, T. Kupper, K. Groenestein, N. J. Hutchings, B. Eurich-Menden, L. Rodhe, T. Misselbrook, and B. Amon. 2012. Emissions of ammonia, nitrous oxide and methane during the management of solid manures. In: Agroecology and Strategies for Climate Change (Ed. E. Lichtfouse). Springer, Dordrecht, the Netherlands. pp. 67-107.
63 Yu, L., K. Yaoqiu, H. Ningsheng, W. Zhifeng, and X. Lianzhong. 2008. Popularizing household-scale biogas digesters for rural sustainable energy development and greenhouse gas mitigation. Renew. Energy 33:2027-2035.   DOI   ScienceOn
64 Zhang, J., K. R. Smith, Y. Ma, S. Ye, F. Jiang, W. Qi, P. Liu, M. A. K. Khalil, R. A. Rasmussen, and S. A. Thorneloe. 2000. Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors. Atmos. Environ. 34:4537-4549.   DOI   ScienceOn