• Title/Summary/Keyword: Biofilter system

Search Result 146, Processing Time 0.027 seconds

Complete genome sequence of Flavobacteriaceae strain KCTC 52651 isolated from seawater recirculating aquaculture system (해수 순환여과양식시스템에서 분리된 Flavobacteriaceae 균주 KCTC 52651의 유전체 분석)

  • Kim, Young-Sam;Jeon, Young Jae;Kim, Kyoung-Ho
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.174-176
    • /
    • 2019
  • A novel bacterium, designated strain RR4-38 (= KCTC 52651 = DSM 108068), belonging to the family Flavobacteriaceae was isolated from a biofilter in the seawater recirculating aquaculture system in South Korea. A single complete genome contig which is 3,182,272 bp with 41.9% G+C content was generated using PacBio RS II platform. The genome includes 2,829 protein-coding genes, 6 rRNA genes, 38 tRNA genes, 4 non-coding RNA genes, and 9 pseudogenes. The results will provide insights for understanding microbial activity in the seawater recirculating aquaculture system.

Biotechnology for the Mitigation of Methane Emission from Landfills (매립지의 메탄 배출 저감을 위한 생물공학기술)

  • Cho, Kyung-Suk;Ryu, Hee-Wook
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.293-305
    • /
    • 2009
  • Methane, as a greenhouse gas, is some 21~25 times more detrimental to the environmental than carbon dioxide. Landfills generally constitute the most important anthropogenic source, and methane emission from landfill was estimated as 35~73 Tg per year. Biological approaches using biocover (open system) and biofilter (closed system) can be a promising solution for older and/or smaller landfills where the methane production is too low for energy recovery or flaring and installation of a gas extraction system is inefficient. Methanotrophic bacteria, utilizing methane as a sole carbon and energy source, are responsible for the aerobic degradation (oxidation) of methane in the biological systems. Many bench-scale studies have demonstrated a high oxidation capacity in diverse filter bed materials such as soil, compost, earthworm cast and etc. Compost had been most often employed in the biological systems, and the methane oxidation rates in compost biocovers/boifilters ranged from 50 to $700\;g-CH_4\;m^{-2}\;d^{-1}$. Some preliminary field trials have showed the suitability of biocovers/biofilters for practical application and their satisfactory performance in mitigation methane emissions. Since the reduction of landfill methane emissions has been linked to carbon credits and trading schemes, the verified quantification of mitigated emissions through biocovers/biofilters is very important. Therefore, the assessment of in situ biocovers/biofilters performance should be standardized, and the reliable quantification methods of methane reduction is necessary.

Gas-phase TCE Degradation in a Two-stage CSTR/TBR System Using Methylosinus trichosporium OB3b (Methylosinus trichosporium OB3b를 이용한 2단계 CSTR/살수층 생물막 반응기에서 기상의 trichloroethylene(TCE) 분해)

  • Choe, Yeong-Beom;Lee, Eun-Yeol;Park, Seong-Hun
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.452-459
    • /
    • 1999
  • A two-stage continuous stirred tank reactor (CSTR)/trickling biofilter reactor (TBR) system was developed for the degradation of gas-phase trichloroethlene (TCE) using Methylosinus trichoporium OB3b. Mrthylosinus trichosporium OB3b was immobilized on activated carbons in TBR and the microbial growth reactor of a CSTR was coupled for the reactivation of the deactivated cells during TCE degradation. The effect of operation variables on TCE conversion and degradation rate were studied. At inlet TCE concentrations ranging from 10 to 80 $\mu$mol/L, TCE degradation rate was increased up to 525 mg TCE/Lㆍday with 75% conversion. The TCE degradation rates were also increased with increse in broth recycle flow rate, gas flow rate and dilution rate. When the temperature of TBR was changed from 3$0^{\circ}C$ to 15$^{\circ}C$, TCE degradation rate and TCE conversion were increased due to the enhanced TCE transfer from gas-phase. The two-stage reactor system was found to be stable and has been operated for more than 270 days.

  • PDF

Development of Parallel Trickling Biofilter for the Treatment of Gas-phase Trichloroethylene

  • Lee, Eun-Yeol;Seol, Eun-Hee;Bae, Hyun-Chul;Kim, Hyun-suk;Ye, Byung-Dae;Park, Sung-Hoon
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.537-540
    • /
    • 2001
  • A parallel TBF system that is consisted of two TBFs was developed f ‘ or the long-term treatment of gas-phase trichloroethylene (TCE). Each TBF was operated for TCE degradation or reactivation in a parallel mode, and the effect of switching time and operation variables between the two reactors was investigated. Within 12 hr after switching from TCE degradation to reactivation mode, the MO activity increased up to the initial level. More than 50 % of TCE was degraded for feed concentrations ranging from 5 to 17 ppmv, and completely 100 % removed at concentration of less than 5 ppmv, while TCE removal decreased severely over 28 ppmv. In various empty bed retention times (EBRTs), ranging 상 om 5.2 to 10.7 min, the optimal EBRT was 10.7 min that TCE conversion achieved more than 50 %. For the inlet loading below 23.4 mg TCE/L/day, TCE was entirely removed. The maximal TCE elimination capacity in this system was about 66.63 mg TCE/L/day. During the continuous treatment of TCE over 3 months, TCE removal efficiency was maintained at the range of about 50 %. In these results, the parallel TBF system can be available for the continuously TCE biodegrading operation.

  • PDF

Complete genome of a denitrifying Halioglobus sp. RR3-57 isolated from a seawater recirculating aquaculture system (순환여과양식시스템으로부터 분리된 Halioglobus sp. RR3-57의 유전체 분석)

  • Kim, Young-Sam;Noh, Eun Soo;Lee, Da-Eun;Kim, Kyoung-Ho
    • Korean Journal of Microbiology
    • /
    • v.53 no.1
    • /
    • pp.58-60
    • /
    • 2017
  • Halioglobus sp. RR3-57 was isolated from a biofilter of a seawater recirculating aquaculture system and its complete genome sequence was obtained using the PacBio RS II platform. Two circular contigs were assembled and considered as a chromosome and a plasmid (size of 4,847,776 bp and 155,799 bp, and G+C content of 57.5% and 53.2%, respectively). Genomic analysis showed RR3-57 had 18 denitrification-related genes and an incomplete prophage.

Optimization for Phosphorus Remove by Loess Ball Using Chromobacterium (Chromobacterium을 이용한 황토볼에 의한 인산 제거를 위한 최적화)

  • Choi Du Bok;Lee Choon-Boem;Cha Wol-Suk
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.584-589
    • /
    • 2005
  • To investigate factors affecting the removal of phosphorus from the practical wastewater in the F-STEP PROCESS using a loess ball and Chromobacterium WS 2-14, first, the loess ball size and calcining temperature, initial pH, initial phosphorus concentration, working temperature, and aeration were studied. A $2\~4mm$ of loess ball made at $960^{\circ}C$ of calcining temperature was the most suitable one for the removal of phosphorus. When the initial pH was increased from 3.0 to 6.0, the removal efficiency of phosphorus was increased. Especially, at 6.0 of initial pH, the maximum removal efficiency of phosphorus was $88.7\%$. The maximum removal efficiency of phosphorous was gained, 1.8mg/h when the initial concentration of phosphorous was 5.0mg/1. When the operating temperature was $30^{\circ}C$, the maximum removal efficiency of phosphorus was obtained. In the case of aeration, when it was increased from 0.5 to 5.0L/min, the removal efficiency of phosphorus was increased. On the other hand, above 7.0 L/min, the removal efficiency of phosphorus did not increased. Using the optimum operation conditions, pilot tests for the effective removal efficiency of phosphorus were carried out for 65 days. The average removal efficiency of phosphorus was $92.0\%$. The average removal efficiency of COD, BOD, and SS were 77.1, 74.2, and $86.4\%$, respectively. from the results, it can be concluded that F-STEP PROCESS using loess ball might be useful process for phosphorus removal.

Development of Up- and Down-flow Constructed Wetland for Advanced Wastewater Treatment in Rural Communities (소규모 오수발생지역의 고도처리시설을 위한 상.하 흐름형 인공습지 개발)

  • Kim, Hyung-Joong;Yoon, Chun-G.;Kwun, Tae-Young;Jung, Kwang-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.113-124
    • /
    • 2006
  • The feasibility of the up- and down-flow constructed wetland was examined fur rural wastewater treatment in Korea. Many constructed wetland process was suffered from substrate clogging and high plant stresses because of long term operation. The up- and down-flow constructed wetland process used porous granule materials (charcoal pumice : SSR=10:20:70) for promoting intake rate of nutrient to plant, and especially flow type was designed continuously repeating from up-flow to down-flow. $BOD_5$ and SS was removed effectively by the process with the average removal rate being about 75% respectively. The wetland process was effective in treating nutrient as well as organic pollutant. Removal of TN and TP were more effective than other wetland system and mean effluent concentrations were approximately 7.5 and $0.4mg\;L^{-1}$ which satisfied the water quality standard for WWTPs. The treatment system did not experience any clogging or accumulations of pollutants and reduction of treatment efficiency during winter period because constructed polycarbonate glass structure prevented temperature drop. Considering stable performance and effective removal of pollutant in wastewater, low maintenance, and cost-effectiveness, the up- and down-flow constructed wetland was thought to be an effective and feasible alternative in rural area.

Study on Particulate Pollutant Reduction Characteristics of Vegetation Biofilters in Underground Subway Stations (지하역사내 식생바이오필터의 입자상 오염물질 저감특성 연구)

  • Kim, Tae Han;Oh, Ji Eun;Kim, Mi Ju
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.99-105
    • /
    • 2022
  • Public attention to the indoor environment of underground subway stations, which is a representative multi-use facility, has been increasing along with the increase in indoor activities. In underground stations, fine iron oxide, which affects the health of users, is generated because of the friction between wheels and rails. Among particulate pollutant reduction technologies, plants have been considered as a non-chemical air purification method, and their effects in reducing certain chemical species have been identified in previous studies. The present study aimed to derive the total quantitative and qualitative reduction effects of a bio-filter system comprising air purifying plants, installed in an underground subway station. The experiment proceeded in two ways. First, PM(particulate matter) reduction effect by vegetation biofilter was monitored with the IAQ(indoor air quality) station. In addition, chemical speciation analysis conducted on the samples collected from the experimental and control areas where plants and irrigation using SEM-EDS(scanning electron microscopy-energy dispersive X-ray spectroscopy). This study confirmed the effect of the vegetation bio-filter system in reducing the accumulation of particulate pollutants and transition and other metals that are harmful to the human body.

Application of Channel Type Aquaculture System to the Complex Facilities with Tilapia Rearing and Hydroponics (양어수경 복합시설에 수로형 사육시설의 적용)

  • 이병일;이준구;홍상근;홍석우;배용수;김기덕
    • Journal of Bio-Environment Control
    • /
    • v.8 no.3
    • /
    • pp.209-215
    • /
    • 1999
  • In order to develop facility for complex farming with aquaculture and vegetable nutrient culture and to investigate growth of tilapia and water quality in the channel type aquaculture system, these experiments were carried out. When tilapia(Tilapia nilotica) was reared in the channel type aquaculture system, Quality of culture water and growth of tilapia were normal. And the growth of tilapia in the channel type and round type aquaculture system was much the same. Channel type aquaculture facilities was applicable to the dual culture system for aquaculture and vegetable culture. Channel type integrated system was composed of aquaculture and sandculture bed, and it was thought that suitable size of the system was about 1.4m(width) $\times$ 1m(height) $\times$ 20m(length).

  • PDF

Performance Characteristics of Agitated Bed Manure Composting and Ammonia Removal from Composting Using Sawdust Biofiltration System (교반식 축분 퇴비화 및 톱밥 탈취처리 시스템의 퇴비화 암모니아 제거 성능)

  • Hong, J.H.;Park, K.J.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • Sawdust biofiltration is an emerging bio-technology for control of ammonia emissions including compost odors from composting of biological wastes. Although sawdust is widely used as a medium for bulking agent in composting system and for microbial attachment in biofiltration systems, the performance of agitated bed composting and sawdust biofiltration are not well established. A pilot-scale composting of hog manure amended with sawdust and sawdust biofiltration systems for practical operation were investigated using aerated and agitated rectangular reactor with compost turner and sawdust biofilter operated under controlled conditions, each with a working capacity of approximately $40m^3\;and\;4.5m^3$ respectively. These were used to investigate the effect of compost temperature, seed germination rate and the C/N ratio of the compost on ammonia emissions, compost maturity and sawdust biofiltration performance. Temperature profiles showed that the material in three runs had been reached to temperature of 55 to $65^{\circ}C$ and above. The ammonia concentration in the exhaust gas of the sawdust biofilter media was below the maximum average value as 45 ppm. Seed germination rate levels of final compost was maintained from 70 to 93% and EC values of the finished compost varied between 2.8 and 4.8 ds/m, providing adequate conditions for plant growth.

  • PDF