• 제목/요약/키워드: Bioelectrochemical denitrification

검색결과 6건 처리시간 0.022초

Bioelectrochemical Denitrification by Pseudomonas sp. or Anaerobic Bacterial Consortium

  • Park, Doo-Hyun;Park, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권3호
    • /
    • pp.406-411
    • /
    • 2001
  • In a bacterial denitrification test with Pseudomonas sp. and anaerobic consortium, more nitrates and less substrate were consumed but less metabolic nitrite was produced under an anaerobic $H_2$ condition rather than under $N_2$ condition. In a bioelectrochemical denitrification test with the same organisms, the electrochemically reduced neutral red was confirmed to be a substitute electron donor and a reducing power like $H_2$. The biocatalytic activity of membrane-free bacterial extract, membrane fraction, and intact cell for bioelectrochemical denitrification was measured using cyclic voltammetry. When neutral red was used as an electron mediator, the electron transfer from electrode to electron acceptor (nitrate) via neutral red was not observed in the cyclic voltammogram with the membrane-free bacterial extract, but it was confirmed to gradually increase in proportion to the concentration of nitrate in that of the membrane fraction and the intact cell of Pseudomonas sp.

  • PDF

Bioelectrochemical Denitrification Using Permeabilized Ochrobactrum anthropi SY509

  • Choi Kyung-Oh;Song Seung-Hoon;Kim Yang-Hee;Park Doo-Hyun;Yoo Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.678-682
    • /
    • 2006
  • To remove nitrate from wastewater, a novel bioelectrochemical denitrification system is introduced. In this proposed system, biological reactions are coupled with reactions on the electrode, whereby the electrons are transferred to the bacterial enzymes via a mediator as an electron carrier. The denitrification reaction was achieved with permeabilized Ochrobactrum anthropi SY509 containing denitrifying enzymes, such as nitrate reductase, nitrite reductase, and nitrous oxide reductase, and methyl viologen was used as the mediator. The electron transfer from the electrode to the enzymes in the bacterial cells was confirmed using cyclic voltammetry. A high removal efficiency of nitrate was achieved when the bioelectrochemical system was used with the permeabilized cells. Furthermore, when the permeabilized cells were immobilized to a graphite felt electrode using a calcium alginate matrix containing graphite powder, a high removal efficiency was achieved (4.38 nmol/min mg cell) that was comparable to the result when using the free permeabilized cells.

Influence of Electric Potential on Structure and Function of Biofilm in Wastewater Treatment Reactor : Bacterial Oxidation of Organic Carbons Coupled to Bacterial Denitrification

  • NA BYUNG KWAN;SANG BYUNG IN;PARK DAE WON;PARK DOO HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1221-1228
    • /
    • 2005
  • Carbon electrode was applied to a wastewater treatment system as biofilm media. The spatial distribution of heterotrophic bacteria in aerobic wastewater biofilm grown on carbon electrode was investigated by scanning electron microscopy, atomic force microscopy, and biomass measurement. Five volts of electric oxidation and reduction potential were charged to the carbon anode and cathode of the bioelectrochemical system, respectively, but were not charged to electrodes of a conventional system. To correlate the biofilm architecture of bacterial populations with their activity, the bacterial treatment efficiency of organic carbons was measured in the bioelectrochemical system and compared with that in the conventional system. In the SEM image, the biofilm on the anodic medium of the bioelectrochemical system looked intact and active; however, that on the carbon medium of the conventional system appeared to be shrinking or damaging. In the AFM image, the thickness of biofilm formed on the carbon medium was about two times of those on the anodic medium. The bacterial treatment efficiency of organic carbons in the bioelectrochemical system was about 1.5 times higher than that in the conventional system. Some denitrifying bacteria can metabolically oxidize $H_{2}$, coupled to reduction of $NO_{3}^{-}\;to\;N_{2}$. $H_{2}$ was produced from the cathode in the bioelectrochemical system by electrolysis of water but was not so in the conventional system. The denitrification efficiency was less than $22\%$ in the conventional system and more than $77\%$ in the bioelectrochemical system. From these results, we found that the electrochemical coupling reactions between aerobic and anaerobic reactors may be a useful tool for improvement of wastewater treatment and denitrification efficiency, without special manipulations such as bacterial growth condition control, C/N ratio (the ratio of carbon to nitrogen) control, MLSS returning, or biofilm refreshing.

생물전기화학반응기를 이용한 생물학적 탈질반응의 촉진 (Acceleration of Biological Denitrification by Using Bioelectrochemical Reactor)

  • 천지은;유재철;박영현;선지윤;조순자;이태호
    • 한국환경과학회지
    • /
    • 제21권8호
    • /
    • pp.989-996
    • /
    • 2012
  • Nitrate contamination of water environments can create serious problems such as eutrophication of rivers. Conventional biological processes for nitrate removal by heterotrophic denitrification often need additional organic substrates as carbon sources and electron donors. We tried to accelerate biological denitrification by using bioelectrochemical reactor (BER) in which electrode works as an electron donor. Denitrification activity of 8 environmental samples from various sediments, soils, groundwaters, and sludges were tested to establish an efficient enrichment culture for BER. The established enrichment culture from a soil sample showed stable denitrification activity without any nitrite accumulation. Microbial community analysis by using PCR-DGGE method revealed that dominant denitrifiers in the enrichment culture were Pantoea sp., Cronobacter sakazakii, and Castellaniella defragrans. Denitrification rate ($0.08kg/m^3{\cdot}day$) of the enrichment culture in BER with electrode poised at -0.5 V (vs Ag/AgCl) was higher than that ($2.1{\times}10^{-2}kg/m^3{\cdot}day$) of BER without any poised potential. This results suggested that biological denitrification would be improved by supplying potential throughout electrode in BER. Further research using BER without any organic substrate addition is needed to apply this system for bioremediation of water and wastewater contaminated by nitrate.